
Uyuni 2024.08
Specialized Guides
August 23 2024

Table of Contents
Specialized Guides Overview 1

1. Salt Guide Overview 2
1.1. Terminology . 2
1.2. Salt Command . 4

1.2.1. Salt Targets. 4
1.2.2. Salt Execution Modules . 5
1.2.3. Salt Function Arguments . 5

1.3. Often Used Salt Commands . 6
1.4. Salt States and Pillars . 7

1.4.1. Group States. 8
1.4.2. Salt Pillars . 8
1.4.3. Download Endpoint . 9

1.5. GPG Encrypted Pillars . 10
1.5.1. Generate GPG keyring for Salt Master . 10
1.5.2. Use GPG for encrypting Pillar secrets . 11
1.5.3. Export the GPG key . 12

1.6. Custom Salt States . 12
1.6.1. Create a New Custom Salt Channel . 12
1.6.2. Example Custom State Files . 14
1.6.3. Custom State to Trust a GPG Key . 14
1.6.4. Apply a custom state at highstate . 16

1.7. Salt File Locations and Structure . 16
1.8. The gitfs Fileserver Backend . 18
1.9. Install Using Yomi . 19

1.9.1. Install the Yomi Formula . 20
1.9.2. Install the PXE Image . 20
1.9.3. Register Yomi in Cobbler . 21
1.9.4. Example Salt Pillar Preparation . 22
1.9.5. Monitor the Installation . 24

1.10. Configuration Modules . 25
1.10.1. Install Configuration Modules . 25

1.11. Salt Formulas . 25
1.11.1. Formulas Provided by Uyuni . 26
1.11.2. Bind Formula . 27
1.11.3. Branch Network Formula . 29
1.11.4. DHCPd Formula. 31
1.11.5. Image Synchronization Formula . 32
1.11.6. Liberate Formula . 33
1.11.7. Monitoring Formula . 36
1.11.8. PXE Formula . 40
1.11.9. Saltboot Formula . 42
1.11.10. TFTPd Formula . 45
1.11.11. Virtualization Guest Formula . 46
1.11.12. Virtualization Host Formula . 46
1.11.13. Yomi Formula . 46
1.11.14. Custom Salt Formulas. 50

1.12. Salt SSH . 64
1.12.1. SSH Connection Methods . 64
1.12.2. Salt SSH Integration . 64
1.12.3. Authentication . 65
1.12.4. User Account . 65
1.12.5. HTTP Redirection . 65
1.12.6. Call Sequence. 66
1.12.7. Bootstrap Sequence . 67
1.12.8. Proxy Support. 69
1.12.9. Users and SSH Key Management. 72
1.12.10. Repository Access with a Proxy . 73
1.12.11. Proxy Setup . 74
1.12.12. Rotate SSH keys . 74

1.13. Salt Rate Limiting. 76
1.13.1. Batching . 76
1.13.2. Disabling the Salt Mine . 76

1.14. Scaling Minions (Large Scale Deployments) . 77
1.15. Salt Connectivity . 77

1.15.1. Minions Connectivity . 77
1.15.2. Proxies Connectivity. 78

2. Large Deployments Guide Overview 81
2.1. Hardware Requirements . 81
2.2. Using a Single Server to Manage Large Scale Deployments . 82

2.2.1. Operation Recommendations . 82
2.3. Multiple Servers with Hub to Manage Large Scale Deployments . 85

2.3.1. Hub Requirements . 85
2.3.2. Hub XMLRPC API Deployment . 86
2.3.3. Using the Hub XMLRPC API . 87
2.3.4. Hub XMLRPC API Namespaces . 87
2.3.5. Hub XMLRPC API Authentication Modes . 88
2.3.6. Hub Reporting . 91

2.4. Managing Large Scale Deployments in a Retail Environment . 94
2.5. Tuning Large Scale Deployments . 95

2.5.1. The Tuning Process . 95
2.5.2. Environmental Variables. 96
2.5.3. Parameters . 97
2.5.4. Memory Usage . 116

2.6. Monitoring Large Scale Deployments . 117
3. Quick Start: SAP Overview 118

3.1. Prepare Server . 118
3.2. Preparing Clients . 118

3.2.1. Register Clients to the SUSE Customer Center . 119
3.2.2. Configure the Clients for Clustering . 119
3.2.3. Create a Shared Storage Device . 119
3.2.4. Download the SAP Installation Software . 119
3.2.5. Configure Clients to Use Latest module.run . 119
3.2.6. Install Additional Disks for HANA . 120
3.2.7. Register Clients to the Server . 120

3.3. Configure Clients . 120

3.3.1. Enable and Configure the HANA Formula. 121
3.3.2. Enable and Configure the Cluster Formula . 122

4. GNU Free Documentation License 125

Specialized Guides Overview
Updated: 2024-08-23

This book contains a list of special topics and functionalities of Uyuni.

It is designed to introduce basic, routine or some advanced tasks, by explaining what you are achieving in
each step, and the various options available to you along the way.

You can read specialized guides for:

• Specialized-guides › Salt

• Specialized-guides › Large-deployments

• Specialized-guides › Qs-sap

1 / 130 | Uyuni 2024.08

Chapter 1. Salt Guide Overview
Updated: 2024-08-23

Salt is a remote execution engine, configuration management and orchestration system used by Uyuni to
manage clients.

In Uyuni, the Salt master runs on the Uyuni Server, allowing you to register and manage Salt clients.

This book is designed to be a primer for using Salt with Uyuni.

For more information about Salt, see the Salt documentation at https://docs.saltstack.com/en/latest/
contents.html.

The current version of Salt in Uyuni is '3006.0'.

1.1. Terminology
Beacon

Beacons allow you to use the Salt event system to monitor non-Salt processes. Clients can use
beacons to connect to various system processes for constant monitoring. When a monitored activity
occurs, an event is sent on the Salt event bus that can then trigger a reactor.

To use beacons on SUSE Linux Enterprise Server Salt clients, install the
python-pyinotify package. For Red Hat Enterprise Linux systems,
install the python-inotify package.

For more information on beacons, see https://docs.saltstack.com/en/latest/topics/beacons/

Broker

The Salt broker allows clients to pass commands to each other. The broker acts like a switch, therefore
peer communication will only work for clients on the same network, or connected to the same proxy.

For more information on Salt and peer communication, see https://docs.saltstack.com/en/latest/ref/
peer.html.

Environment

Uyuni implements Salt with a single environment. Multiple Salt environments are not supported.

Formulas

Formulas are collections of Salt States that contain generic parameter fields. Formulas are used within
Uyuni to assist with configuring Salt clients. Some formulas have extensive configuration options, and
use forms to help organize them in the Uyuni Web UI.

For more information about formulas, see Specialized-guides › Salt.

1.1. Terminology

2 / 130 1.1. Terminology | Uyuni 2024.08

https://docs.saltstack.com/en/latest/contents.html
https://docs.saltstack.com/en/latest/contents.html
https://docs.saltstack.com/en/latest/topics/beacons/
https://docs.saltstack.com/en/latest/ref/peer.html
https://docs.saltstack.com/en/latest/ref/peer.html

Grains

Grains provide information about the hardware of a client. This includes the operating system, IP
addresses, network interfaces, and memory. When you run a Salt command any modules and
functions are run locally from the system being called.

For more information on grains, see https://docs.saltstack.com/en/latest/topics/grains/.

Highstate

This term is used when you apply all outstanding states to all targeted clients at the same time. The
highstate must be applied when doing changes to systems, including enabling and disabling formulas.

Key Fingerprints

Key fingerprints are exchanged between the Uyuni Server and Salt clients to verify the identity of the
server and the client. This prevents Salt clients from connecting to the wrong server. You can see the
fingerprints of your Salt clients by navigating to Salt › Keys.

Master

The Salt master issues commands to its attached clients. In Uyuni, the Salt master must be the Uyuni
Server.

Minions

Salt clients that are connected to and controlled by the Salt master on the Uyuni Server. In Uyuni,
these are sometimes referred to as Salt clients. This is a difference in terminology only.

Modules

Functions within Salt are stored in modules. Salt modules are stored on clients and the Uyuni Server
within the /usr/lib/python*/site-packages/salt/ directory. There are many types of Salt
modules, including state and execution modules. You can write your own Salt modules using Python.

For a complete list of available Salt modules, see https://docs.saltstack.com/en/latest/ref/index.html.

Pillars

Pillars are created on the Uyuni Server. They contain information about a client or group of clients.
Pillars allow you to send confidential information to a targeted client or group of clients. Pillars are
useful for sensitive data, configuration of clients, variables, and any arbitrary data.

For more information on pillars, see https://docs.saltstack.com/en/latest/topics/tutorials/pillar.html.

States

States are configuration templates. They allow you to describe what each of your systems should look
like, including the applications and services that are installed and running. States are applied to the
target client. This automates the process of bringing a large number of systems into a known state, and
then maintaining them.

Do not update the salt package using states. Update all other system
packages using states. You can then update the salt package from the

1.1. Terminology

3 / 130 1.1. Terminology | Uyuni 2024.08

https://docs.saltstack.com/en/latest/topics/grains/
https://docs.saltstack.com/en/latest/ref/index.html
https://docs.saltstack.com/en/latest/topics/tutorials/pillar.html

Uyuni Web UI as a separate step.

For more information on states, see https://docs.saltstack.com/en/latest/topics/tutorials/
starting_states.html.

For more Salt terminology, see https://docs.saltstack.com/en/latest/glossary.html.

1.2. Salt Command
Salt commands have three main components: target, function, and arguments. The calls are constructed in
this format:

salt 'target' <function> [arguments]

The target defines the client, or group of clients, on which to run the function.

The function is the particular task to be run.

Arguments provide any extra data required by the function.

1.2.1. Salt Targets

Salt command targets allow you to specify a client or group of clients. There are several different targets
you can use.

General Targeting

List available grains on all clients:

salt '*' grains.ls

Target a specific client:

salt 'web1.example.com' test.ping

Glob Targeting

Target all clients using a particular domain:

salt '*example.com' test.ping

Target all clients using a particular label:

salt 'label*' test.ping

1.2. Salt Command

4 / 130 1.2. Salt Command | Uyuni 2024.08

https://docs.saltstack.com/en/latest/topics/tutorials/starting_states.html
https://docs.saltstack.com/en/latest/topics/tutorials/starting_states.html
https://docs.saltstack.com/en/latest/glossary.html

List Targeting

Specify a flat list of clients, using their IDs:

salt -L 'client_ID1, client_ID2, client_ID3' test.ping

Regular Expression Targeting

You can also define targets with PCRE-compliant regular expressions:

salt -E '(?!web)' test.ping

IP Address Targeting

List available client IP addresses:

salt '*' network.ip_addrs

Target a specific client IP address:

salt -S '172.31.60.74' test.ping

Target all clients on a subnet:

salt -S 172.31.0.0/16 test.ping

For more on targeting, see https://docs.saltstack.com/en/latest/topics/targeting/.

1.2.2. Salt Execution Modules

When you have specified a target, provide the module and function to execute on the target.

Find which modules can be executed on the target:

salt '*' sys.doc

For a full list of callable modules, see https://docs.saltstack.com/en/latest/ref/modules/all/index.html.

1.2.3. Salt Function Arguments

Functions accept arguments for any extra data.

For example, the pkg.install function requires an argument specifying which package to install:

1.2. Salt Command

5 / 130 1.2. Salt Command | Uyuni 2024.08

https://docs.saltstack.com/en/latest/topics/targeting/
https://docs.saltstack.com/en/latest/ref/modules/all/index.html

salt '*' pkg.install yast2

You can provide more than one argument to a function, with spaces between them. For example:

salt '*' cmd.run 'echo "Hello: $FIRST_NAME"' env='{FIRST_NAME: "John"}'

1.3. Often Used Salt Commands
This section contains the most commonly used Salt commands. For a complete list of available Salt
commands, see https://docs.saltstack.com/en/latest/ref/cli/index.html.

salt-run

Display all clients that are running:

salt-run manage.up

Display all clients that are not running:

salt-run manage.down

Display the current status of all Salt clients:

salt-run manage.status

Check the version of Salt running on the Uyuni Server and active clients:

salt-run manage.versions

salt-cp

Copy a file to a client or set of clients:

salt-cp '*' foo.conf /root

salt-key -l

List public keys:

salt-key -l all

1.3. Often Used Salt Commands

6 / 130 1.3. Often Used Salt Commands | Uyuni 2024.08

https://docs.saltstack.com/en/latest/ref/cli/index.html

salt-key -a my-minion

Accept pending key for a minion:

salt-key -a my-minion

salt-key -A

Accept all pending keys:

salt-key -A

salt grains

List all available grains:

salt '*' grains.ls

List collected grain system data:

salt '*' grains.items

1.4. Salt States and Pillars
States are configuration templates. They allow you to describe what each of your systems should look
like, including the applications and services that are installed and running. Salt state files are referred to as
SLS (SaLt State) files.

States are applied to the target systems by matching relevant state data to clients. The state data comes
from Uyuni in the form of package and custom states.

You can target clients at three specific levels of hierarchy and priority: individual clients, system groups,
and organization. Individual clients have priority over groups, and groups have priority over the
organization.

For example:

• The Organization requires that version 1 is installed. All clients are part of the same Organization.

• Group A requires that version 2 is installed. Client1, Client2, and Client3 are part of Group A.

• Group B requires any version installed. Client4 is part of Group B.

Leading to these possible scenarios:

• Client1 wants package removed, package is removed (Client Level)

• Client2 wants version 2, gets version 2 (Client Level)

1.4. Salt States and Pillars

7 / 130 1.4. Salt States and Pillars | Uyuni 2024.08

• Client3 wants any version, gets version 2 (Group Level)

• Client4 wants any version, gets version 1 (Organization Level)

For more information on Salt states, see https://docs.saltproject.io/en/latest/topics/states/.

You can create custom Salt states with Uyuni. For more information, see Specialized-guides › Salt.

1.4.1. Group States

Pillar data can be used to perform bulk actions, like applying all assigned states to clients within the
group. This section contains some examples of bulk actions that you can take using group states.

To perform these actions, you will need to determine the ID of the group that you want to manipulate.
You can determine the Group ID by using the spacecmd command:

spacecmd group_details

These examples use an example Group ID of GID.

To apply all states assigned to the group:

salt -I 'group_ids:GID' state.apply custom.group_GID

To apply any state (whether or not it is assigned to the group):

salt -I 'group_ids:GID' state.apply ``state``

To apply a custom state:

salt -I 'group_ids:2130' state.apply manager_org_1.``customstate``

Apply the highstate to all clients in the group:

salt -I 'group_ids:GID' state.apply

1.4.2. Salt Pillars

Uyuni exposes a small amount of internal data as pillars which can be used with custom states. Pillars are
created on the Uyuni Server, and contain information about a client or group of clients. For custom
information in pillars, see Client-configuration › Custom-info. Pillars are useful for sensitive data,
configuration of clients, variables, and any arbitrary data.

1.4. Salt States and Pillars

8 / 130 1.4. Salt States and Pillars | Uyuni 2024.08

https://docs.saltproject.io/en/latest/topics/states/

Pillars are managed either automatically by Uyuni, or manually by the user.

If you change pillar data on the server (Salt master) the actual pillar data on the
client (minion) is updated only after calling saltutil.refresh_pillar for
the client.

Otherwise it could happen that pillar.items and pillar.get calls would
produce different results with different values of pillars that were not refreshed.

To avoid hard-coding organization IDs within SUSE Linux Enterprise Server files, a pillar entry is added
for each organization:

org-files-dir: relative_path_to_files

The specified file is available for all clients which belong to the organization.

This is an example of a pillar located at /etc/motd:

file.managed:
 - source: salt://{{ pillar['org-files-dir']}}/motd
 - user: root
 - group: root
 - mode: 644

For more information on Salt pillars, see https://docs.saltproject.io/en/latest/topics/pillar/.

1.4.3. Download Endpoint

By default, Uyuni assumes that the download endpoint to use is the FQDN of the Uyuni Server or Proxy.
However, there are some cases where you might like to use a different FQDN as the download endpoint.
The most common example is if you need to use load balancing, caching proxies, or in environments with
complicated networking requirements.

To change the package download endpoint, you can manually adjust three Salt pillars: *
pkg_download_point_protocol, defaults to https. * pkg_download_point_host, defaults to
the FQDN of the Uyuni Server (or Proxy, if in use). * pkg_download_point_port, defaults to 443.

If you do not adjust these pillars directly, Uyuni will fall back to the default values.

Procedure: Changing the Package Download Endpoint Pillar

1. Navigate to /srv/pillar/ and create a file called top.sls with these contents:

base:
 '*':
 - pkg_download_points

1.4. Salt States and Pillars

9 / 130 1.4. Salt States and Pillars | Uyuni 2024.08

https://docs.saltproject.io/en/latest/topics/pillar/

This example directs Salt to look at the pkg_download_points.sls file to determine the base
URL to use. You can adjust this file to target different clients or groups, depending on your
environment.

2. Remain in /srv/pillar/ and create a file called pkg_download_points.sls with the base
URLs you want to use. For example:

pkg_download_point_protocol: http
pkg_download_point_host: example.com
pkg_download_point_port: 444

3. OPTIONAL: If you want to use external pillars, for example Group IDs, open the master
configuration file and set the ext_pillar_first parameter to true. You can then use Group
IDs to set conditional values, for example:

{% if pillar['group_ids'] is defined and 8 in pillar['group_ids'] %}
 pkg_download_point_protocol: http
 pkg_download_point_host: example.com
 pkg_download_point_port: 444
{% else %}
 pkg_download_point_protocol: ftp
 pkg_download_point_host: example.com
 pkg_download_point_port: 445
{%- endif %}

4. OPTIONAL: You can also use grains to set conditional values, for example:

{% if grains['fqdn'] == 'client1.example.com' %}
 pkg_download_point: example1.com
{% elif grains['fqdn'] == 'client2.example.com'' %}
 pkg_download_point: example2.com
{% else %}
 pkg_download_point: example.com
{% endif %}

1.5. GPG Encrypted Pillars
Salt has support to transparently decrypt GPG-encrypted Pillar data built-in. The decryption happens on
the Salt Master.

1.5.1. Generate GPG keyring for Salt Master

The GPG keyring can be specified in /etc/salt/master or in its own file under
/etc/salt/master.d/, for example /etc/salt/master.d/gpg-pillar.conf.

Always create a separate keyring for the Salt Master.

Procedure: Generating key pair

1.5. GPG Encrypted Pillars

10 / 130 1.5. GPG Encrypted Pillars | Uyuni 2024.08

1. On the Salt Master create GPG home directory and restrict its permissions:

mkdir /etc/salt/gpgkeys
chmod 700 /etc/salt/gpgkeys

2. Generate a key pair interactively.

 The password must be empty.

gpg --gen-key --homedir /etc/salt/gpgkeys

3. Salt does not run with root permissions on SUSE Linux Enterprise and openSUSE distributions.

chown -R salt:salt /etc/salt/gpgkeys

4. Configure Salt Master to use the new GPG home directory

echo 'gpg_keydir: /etc/salt/gpgkeys' >/etc/salt/master.d/gpg-pillar.conf
systemctl reload-or-restart salt-master

1.5.2. Use GPG for encrypting Pillar secrets

Salt GPG renderer decrypts GPG encrypted contents that are ASCI-armored. To use the GPG renderer in
a Pillar YAML file, change

#!yaml

to

#!yaml|gpg

Encrypting pillar secrets can be done anywhere as long as the GPG and the public key generated in
Procedure: Generating key pair are available.

In this example, "SUMA Salt Master" is the GPG key’s UID created earlier.

echo 't0ps3cr3t' | gpg --armor --batch --encrypt --recipient "SUMA Salt Master"

When the GPG encrytped contents are created and available as ASCII-armored output, this output can be
used as a multi-line string in a pillar YAML file:

#!yaml|gpg

1.5. GPG Encrypted Pillars

11 / 130 1.5. GPG Encrypted Pillars | Uyuni 2024.08

secret:
 my-secret: |
 -----BEGIN PGP MESSAGE-----

 hQEMA3OrmRaWrqgqAQf/ej8xV+nO3HVbQRCeJgCmt5ZjnogT++HHeFzXymfr1SgT
 XySyAqpIZB2N6MjZXtupO2sCmG6fzqtmnW+vRsZhQG8PAqzRtAekFuVbXzgkigBk
 338yOdyltVBtMONnkHFQ+7EP1tfJnWLCVrJ1I42vGFLZf2AD1xhbjewCcoaK82J4
 f8u9U/dxgV0N6na28WG5m6YU5Reu1Ca37PXHuqA/0XZl65DY63xaMPMDHZEi1wkU
 GXU7OsiL1dO0/sST1Awo5i99kVt/kA6DCGDuxTNpLrauNLOKUbtwcxvavtNZGwdQ
 yI9zWVx8qerWE0aO3M7zVDJftv77faV2ENiqzaadvtJHAZynW4GW7rSuP1RXFzlB
 DOAmzdRuIJwiLC9R2BKu3x+avReQb6xoz7eF7WthC0H0dz4mYakwPlVZ5yqYa/+G
 83i951rqAGI=
 =g+ji
 -----END PGP MESSAGE-----

When the pillar is assigned to a system with top.sls, the GPG encrypted pillar data is available in a
decrypted format.

The client’s in-memory cache is only updated on startup or when running
execution module functions that trigger a cache refresh such as
saltutil.refresh_pillar, pillar.items, or state.apply.

suma-sles15sp1.tf.local:

 my-secret:
 t0p s3cr3t!

1.5.3. Export the GPG key

To export the GPG key, use the command:

gpg --export 'SUMA Salt Master' --homedir /etc/salt/gpgkeys --output suma-salt-master.gpg

Here 'SUMA Salt Master' is the name used during key generation.

The suma-salt-master.gpg public key can be freely shared.

1.6. Custom Salt States
You can create your own custom Salt states with Uyuni as centrally managed configuration channels.
Custom states are stored as Salt state files on the Uyuni Server with a .sls extension.

1.6.1. Create a New Custom Salt Channel

You can use the Uyuni Web UI to create and edit custom Salt state files. You must create a state channel
first, with an initial state named init.sls. The init.sls file is used to reference all other state files
within the channel. The custom states that you create using the Web UI are stored on the Uyuni Server in
the the /srv/susemanager/salt/<organization>/ directory.

1.6. Custom Salt States

12 / 130 1.6. Custom Salt States | Uyuni 2024.08

After the channel is created with an init.sls file, you can write additional state files in the Web UI.
Alternatively, you can upload existing state files to use within your state channel, or import them from
other channels or clients.

Procedure: Creating a Custom Salt Channel and Initial State

1. In the Uyuni Web UI, navigate to Configuration › Channels.

2. Click Create State Channel .

3. In the Name field, type a name for your state.

4. In the Label field, type a label. Use alphanumeric characters, hyphens, and underscores. Do not use
spaces.

5. In the Description field, type a short description of the configuration your state performs.

6. In the SLS Contents field, type the contents of your init.sls state. If you want to reference file
templates in this configuration channel, ensure your file starts by specifying the source of the
managed file, using this syntax:

file.managed:
 - source: salt://<org_name>/<channel_name>/etc/<ID>/<filename>

 Example custom state files are given later in this section.
. Click btn:[Update Channel] to save your state.

Procedure: Adding Additional Files to a Custom State Channel

1. In the Uyuni Web UI, navigate to Configuration › Channels. . Click the name of the channel you
want to add files to.

2. To create a new file, click Create configuration file and type the contents of the file.

3. To upload an existing file, click Upload Configuration Files and select the file to upload.

4. To copy an existing file, click Import a File from Another Channel or System and select the file to
copy.

Procedure: Editing a Custom Salt State

1. In the Uyuni Web UI, navigate to Configuration › Channels.

2. Click View/Edit <filename>.sls File .

3. Make your changes to the file.

4. Click Update Configuration File to save your state.

You can also manage revisions, compare the state to others in your organization, and download the .sls
file from this dialog.

Procedure: Assigning a Client to a Custom Salt State

1.6. Custom Salt States

13 / 130 1.6. Custom Salt States | Uyuni 2024.08

1. In the Uyuni Web UI, navigate to Configuration › Channels.

2. Click the name of the state you want to assign a client to.

3. Navigate to the Systems › Target Systems tab.

4. Check the clients you want to assign.

5. Click Subscribe systems .

For more information about Salt state modules, see https://docs.saltproject.io/en/latest/ref/states/all/
index.html.

1.6.2. Example Custom State Files

This section contains some example custom state files. Use these as a basis for writing your own custom
states.

Listing 1. Example: Manage a File

my_config_change_id:
 file.managed:
 - name: /etc/my.conf
 - source: salt://example_org/example_channel/etc/my.conf
 - user: root
 - group: root
 - mode: 644
 - template: jinja

Listing 2. Example: Package Management

my_pkg_id:
 pkg.installed:
 - refresh: True
 - pkgs:
 - glibc
 - kernel-default
 - hello: 1.0-42

Listing 3. Example: Remote Command

ip_forward-on:
 cmd.run:
 - name: echo "1" > /proc/sys/net/ipv4/ip_forward
 - onlyif:
 - test `cat /proc/sys/net/ipv4/ip_forward` -eq 0

Listing 4. Example: Service Management

time_service_id:
 service.running:
 - name: chronyd
 - enable: True

1.6.3. Custom State to Trust a GPG Key

1.6. Custom Salt States

14 / 130 1.6. Custom Salt States | Uyuni 2024.08

https://docs.saltproject.io/en/latest/ref/states/all/index.html
https://docs.saltproject.io/en/latest/ref/states/all/index.html

By default, operating systems trust only their own GPG keys when they are installed, and do not trust keys
provided by third party packages. The clients can be successfully bootstrapped without the GPG key
being trusted. However, you cannot install new third party packages or update them until the keys are
trusted.

Salt clients are set to trust SUSE tools channels GPG keys when they are bootstrapped. For all other
clients and channels, you need to manually trust third party GPG keys.

If you are bootstrapping Salt clients from the Uyuni Web UI, you can use a custom Salt state to trust the
GPG key.

Procedure: Trusting a GPG Key With a Custom Salt State

1. Locate the key that you need to trust. Ensure you have the correct key, and that you also have the
fingerprint used to verify the key. This information is available from the vendor or, in some cases,
from a key server.

2. Copy the key to a file location where the client can access it. We recommend saving it in the
/srv/www/htdocs/pub/ directory, where all user public files must be saved.

3. In the Uyuni Web UI, navigate to Configuration › Channels.

4. Click Create State Channel .

5. In the Name field, type a name for your state. For example, GPG Key Trusts.

6. In the Label field, type a label. For example, GPG_Key_Trusts.

7. In the Description field, type a short description of the configuration your state performs. For
example, Trusts GPG Keys for CentOS.

8. In the SLS Contents field, create a state to retrieve the appropriate key from the Uyuni Server and
trust it on the client. The exact contents of your state varies depending on your client operating
system. For example:

rpm_trust_gpg_key:
 cmd.run:
 - name: rpm --import https://{{ salt['pillar.get']('mgr_server') }}/pub/<third-
party-gpg>.key
 - unless: rpm -q gpg-pubkey-<key_id>

deb_trust_gpg_key:
 mgrcompat.module_run:
 - name: pkg.add_repo_key
 - path: https://{{ salt['pillar.get']('mgr_server') }}/pub/<third-party-gpg>.key

 Alternatively, you can add GPG keys to a configuration channel, using a managed file
to deploy them directly on the client.
 In this case, you would use a local path to the key, rather than a URL.
. Click btn:[Update Channel] to save your state.
. Navigate to menu:Configuration[Channels] and click the name of the state you want to
assign a client to.
. Navigate to the menu:Systems[Target Systems] tab and check the clients you want to
assign.
. Click btn:[Subscribe systems].

1.6. Custom Salt States

15 / 130 1.6. Custom Salt States | Uyuni 2024.08

 When the configuration file is next run on the client, the GPG key is trusted.

Alternatively, you can manage your GPG keys from your own repository hosted on an external file
management system.

1.6.4. Apply a custom state at highstate

To apply a custom state at highstate create a mapping in /srv/salt/top.sls. This short example
maps the test state to the system group 12:

/srv/salt/top.sls
base:
 'group_ids:12':
 - match: pillar
 - test

1.7. Salt File Locations and Structure
There are several ways to set up the Salt file structure. This section describes how Salt is supported and
set up as part of Uyuni Server. The main configuration file is
/etc/salt/master.d/susemanager.conf.

Do not edit the /etc/salt/master.d/susemanager.conf configuration
file. This file belongs to the spacewalk-setup package and is marked as
%config. When SUSE updates the spacewalk-setup package, the
susemanager.conf file is overwritten, and any customization is lost. Instead,
add your own configuration file to the /etc/salt/master.d/ directory. This
prevents the update process from deleting your settings from the main
susemanager.conf configuration file.

Some settings from /etc/salt/master.d/susemanager.conf that can help with finding
configuration options:

Configure different file roots. Custom salt states should only be placed in
/srv/salt.
Users should not touch other directories listed here.
file_roots:
 base:
 - /usr/share/susemanager/salt
 - /usr/share/salt-formulas/states
 - /usr/share/susemanager/formulas/states
 - /srv/susemanager/salt
 - /srv/salt

Configure different pillar roots. Custom pillar data should only be placed
in /srv/pillar.
Users should not touch other directories listed here.
pillar_roots:
 base:
 - /srv/pillar

1.7. Salt File Locations and Structure

16 / 130 1.7. Salt File Locations and Structure | Uyuni 2024.08

When you are working with /etc/salt/master.d/susemanager.conf, be aware that:

• Files listed are searched in the order they appear

• The first matching file found is called

The Uyuni Server reads Salt state data from five root directories:

/usr/share/susemanager/salt

This directory is shipped and updated with Uyuni and includes certificate setup and common state
logic to be applied to packages and channels.

 Do not edit or add custom Salt data to this directory.

/usr/share/salt-formulas/states

/usr/share/susemanager/formulas/states

These directories are shipped and updated with Uyuni or additional extensions. They include states
for Salt formulas.

 Do not edit or add custom Salt data to this directory.

/srv/susemanager/salt

This directory is generated by Uyuni, based on assigned channels and packages for clients, groups,
and organizations. This directory will be overwritten and regenerated. It is the Salt equivalent of the
Uyuni database.

 Do not edit or add custom Salt data to this directory.

Within this directory, each organization has a sub-directory.

Listing 5. Example: SLS File Directory Structure

├── manager_org_<org id>
│ ├── files
│ │ ... files needed by states (uploaded by users)...
│ └── state.sls
 ... other SLS files (created by users)...
For example:
├── manager_org_TESTING
│ ├── files
│ │ └── motd # user created
│ │ ... other files needed by states ...
│ └── motd.sls # user created
 ... other SLS files ...

/srv/salt

This directory is used for custom state data, modules, and related data. Uyuni does not operate or use
this directory directly. The state data in this directory is used by the client highstate, and is merged
with the total state result generated by Uyuni. Use this directory for custom Salt data.

1.7. Salt File Locations and Structure

17 / 130 1.7. Salt File Locations and Structure | Uyuni 2024.08

The Uyuni Server reads Salt pillar data from two root directories:

/usr/share/susemanager/pillar

This directory is generated by Uyuni. It is shipped and updated together with Uyuni.

 Do not edit or add custom Salt data to this directory.

/srv/pillar

By default, Uyuni does not operate or use this directory directly. The custom pillar data in this
directory is merged with the pillar result created by Uyuni. Use this directory for custom Salt pillar
data.

You can use the gitfs fileserver backend to serve Salt data from git
repositories. For more information, see Specialized-guides › Salt.

1.8. The gitfs Fileserver Backend
In Uyuni, pygit2 is the supported Python interface to git. When pygit2 is installed the gitfs
fileserver backend is available and it is a supported feature.

Configuration options are set in the /etc/salt/master file, or in a separate configuration file in the
/etc/salt/master.d/ directory. The basic settings are:

fileserver_backend

List of fileserver backends that the Salt master checks for files in the order they are defined. Options:

• roots: Files local on the Salt master (Uyuni Server). roots is required to keep the product
running. You can only enable gitfs optionally. Additionally, SUSE strongly recommends to
prefer roots (local files) over gitfs. The standard backend.

• gitfs: Files stored in one or more git repositories. The repositories are defined with
gitfs_remotes.

Example:

fileserver_backend:
 - roots
 - git

gitfs_remotes

List of git repositories. git://, https://, file://, or ssh:// URLs can be configured. For
SSH remotes, a scp-like syntax is also supported; for example:
gitlab@gitlab.example.com:universe/setup.git. Then you can also specify options for
credentials, file locations, or branches such as pubkey, privkey, root,base.

Example:

1.8. The gitfs Fileserver Backend

18 / 130 1.8. The gitfs Fileserver Backend | Uyuni 2024.08

gitfs_remotes:
 - https://example.com/myformulas/formula.git
 - gitlab@gitlab.example.com:universe/setup.git:
 - pubkey: /var/lib/salt/.ssh/id_rsa_gitlab.pub
 - privkey: /var/lib/salt/.ssh/id_rsa_gitlab
 - root: srv/salt
 - base: master

ext_pillar

List of external pillar interfaces. Salt can also serve pillar data from one or more git repositories. For
syntax and options, also see the gitfs_remotes setting.

Example:

ext_pillar:
 - git:
 - master gitlab@gitlab.example.com:universe/setup.git:
 - root: srv/pillar
 - pubkey: /var/lib/salt/.ssh/id_rsa_gitlab.pub
 - privkey: /var/lib/salt/.ssh/id_rsa_gitlab

For more information, see:

• https://docs.saltstack.com/en/latest/topics/tutorials/gitfs.html

• https://docs.saltstack.com/en/latest/ref/configuration/master.html

1.9. Install Using Yomi
Yomi (yet one more installer) is an installer for SUSE and openSUSE operating systems. Yomi is designed
as a Salt state, and can be used for installing SUSE operating systems on new systems.

In Uyuni, Yomi can be used as part of provisioning new clients, as an alternative to AutoYaST.

Yomi consists of two components:

• The Yomi formula, which contains the Salt states and modules required to perform the installation.

• The operating system image, which includes the pre-configured salt-minion service.

Both components can be used independently of Uyuni, or integrated with it. This section describes how
to use it with Uyuni.

• For more information about using Yomi independently, see https://github.com/openSUSE/yomi.

• For build assets, see https://build.opensuse.org/project/show/systemsmanagement:yomi.

To use Yomi for installing a client operating system, follow this process:

• Install the yomi-formula package.

1.9. Install Using Yomi

19 / 130 1.9. Install Using Yomi | Uyuni 2024.08

https://docs.saltstack.com/en/latest/topics/tutorials/gitfs.html
https://docs.saltstack.com/en/latest/ref/configuration/master.html
https://github.com/openSUSE/yomi
https://build.opensuse.org/project/show/systemsmanagement:yomi

• Prepare the Salt pillar for the new installation.

• Boot the new client using the PXE boot image for Yomi.

To use Yomi with Uyuni, ensure you have enough available memory. To boot
from USB or DVD image, you need at least 512 MB. To boot from a PXE
server, you need at least 2 GB.

1.9.1. Install the Yomi Formula

Before you begin, you need to install the Yomi formula, which is available as a package in Uyuni.

The yomi-formula package contains the Salt states and modules that describe the Yomi state, and the
formulas with forms to create the pillar. It also contains documentation about the different sections of the
pillar, and some examples about how to parameterize installations based on openSUSE, MicroOS, or SLE.

The formula package performs these actions:

• Adds a new configuration file called yomi-formula.conf in the /etc/salt/master.d/
directory. This configuration file defines the Python module and Salt states required by Yomi.

• Installs the Yomi Salt states in the /usr/share/salt-formulas/states/ directory.

• Provides some example configuration files in the /usr/share/yomi/ directory.

• Installs the required forms and sub-forms in the /usr/share/salt-formulas/metadata/
directory.

• Provides some pillar examples in the /usr/share/yomi/pillar/ directory.

Procedure: Installing the Yomi Formula

1. On the Uyuni Server, at the command prompt, as root, install the yomi-formula package:

zypper in yomi-formula

2. Restart services:

systemctl restart salt-master.service

For more information about the Yomi formula, see Specialized-guides › Salt.

1.9.2. Install the PXE Image

To provision a new client, you need an operating system image to boot from. You can use any image that
contains a salt-minion service enabled, together with a minimal set of tools that are required during
the installation, for example parted or btrfstools.

1.9. Install Using Yomi

20 / 130 1.9. Install Using Yomi | Uyuni 2024.08

Yomi provides an already prepared image, based on openSUSE Tumbleweed, openSUSE Leap (for
Uyuni), or SLE (for SUSE Manager). For Uyuni, the image is packaged as an RPM. This is done in a
similar way to how pxe-default-image is distributed.

The package installs a standard PXE OEM image generated by Kiwi, the initial kernel and initrd in the
/srv/pxe-yomi-image/ directory, and the second stage kernel, initrd and image in the /srv/pxe-
yomi-image/image directory.

Procedure: Installing the PXE Image

1. On the Uyuni Server, at the command prompt, as root, install the pxe-yomi-image service:

zypper in pxe-yomi-image-opensuse15

When you have the package installed, you can register Yomi in Cobbler.

1.9.3. Register Yomi in Cobbler

Uyuni uses Cobbler to manage the PXE boot service, so you will need to register the image in Cobbler.

Procedure: Registering the Yomi Image in Cobbler

1. On the Uyuni Server, at the command prompt, as root, create a directory for the Yomi image:

mkdir /srv/tftpboot/pxe-yomi-image

2. Define a distribution in Cobbler, including the path to install the second stage kernel and initrd, the
location of the full image, and any further kernel options. Adjust this command to include the correct
version of the product, and the TFTP server address:

cobbler distro add \
 --name=pxe-yomi-image \
 --kernel=/srv/pxe-yomi-image/linux \
 --initrd=/srv/pxe-yomi-image/initrd \
 --boot-files='/srv/tftpboot/pxe-yomi-image/image.initrd=/srv/pxe-yomi-image/image/pxe
-yomi-image-opensuse15.x86_64-1.0.0.initrd /srv/tftpboot/pxe-yomi-
image/image.kernel=/srv/pxe-yomi-image/image/pxe-yomi-image-opensuse15.x86_64-
1.0.0.kernel /srv/tftpboot/pxe-yomi-image/image.md5=/srv/pxe-yomi-image/image/pxe-yomi-
image-opensuse15.x86_64-1.0.0.md5 /srv/tftpboot/pxe-yomi-
image/image.config.bootoptions=/srv/pxe-yomi-image/image/pxe-yomi-image-opensuse15-
x86_64-1.0.0.config.bootoptions /srv/tftpboot/pxe-yomi-image/image.xz=/srv/pxe-yomi-
image/image/pxe-yomi-image-opensuse15.x86_64-1.0.0.xz' \
 --kernel-options='rd.kiwi.install.pxe rd.kiwi.install.image=tftp://<server-
address>/pxe-yomi-image/image.xz rd.kiwi.ramdisk ramdisk_size=2097152 net.ifnames=1'

By default, the salt-minion service in pxe-yomi-image is configured to find the Salt master under
the salt address. If the DNS server is not able to resolve this address, you need to adjust the kernel-
options parameter from the Cobbler command that register the distribution, and add a new kernel
command line of ym.master=master_address. This will override the default configuration for the
salt-minion.

1.9. Install Using Yomi

21 / 130 1.9. Install Using Yomi | Uyuni 2024.08

Procedure: Registering the Yomi Profile in Cobbler

1. On the Uyuni Server, at the command prompt, as root, define a profile in Cobbler based on the
image.

cobbler profile add \
 --name pxe-yomi-profile \
 --distro=pxe-yomi-image

2. OPTIONAL: Create a system in Cobbler. If you know the MAC address for the new client to be
provisioned, you can have it boot directly from the Yomi image.

cobbler system add \
 --name=yomi \
 --mac=00:11:22:33:44:55 \
 --profile=pxe-yomi-profile

3. When the new node has been provisioned, remove the temporary Cobbler system:

cobbler system remove --name=yomi

1.9.4. Example Salt Pillar Preparation

The parameters of the new installation are defined with a Salt pillar. The pillar includes parameters that
the Yomi state requires during the installation, including the partitions, file systems, repositories, packages
installed, and services enabled.

The pillar is defined using the formulas with forms. In this example, we prepare the pillar for a minimal
openSUSE Tumbleweed installation. You can find examples for MicroOS or SLES in the example
directory /usr/share/yomi/pillar/.

To begin, boot the client that you want to provision using the Yomi PXE boot image, using the Cobbler
procedures described earlier in this section.

When the salt-minion service is running on the new client, accept the key by navigating to Salt ›
Keys. When the key is accepted, you can view and manage the client by navigating to Systems ›
Overview. Navigate to the Formulas tab, and add all the Yomi Installer formulas to the client. When
you have added all the formulas, complete the forms and sub-forms. This section outlines each form and
provides example settings for a minimal installation. For a detailed explanation of every option, see
Specialized-guides › Salt.

Yomi

The Yomi form contains some general configuration options. For example, the keyboard language and
layout, the locale information, and the option to perform a full reset of the system after provisioning.

For this example, set the Reboot parameter to yes.

1.9. Install Using Yomi

22 / 130 1.9. Install Using Yomi | Uyuni 2024.08

Yomi Storage

This sub-form provides information about the devices, partitioning, file system (including the BtrFS
subvolumes, for example), and LVM and RAID configuration.

For this example, we assume that the new client has a single device named /dev/sda, and that it belongs
to a non-UEFI system. In this case, we have only three partitions: one for the boot loader, one for swap
and one for the system. We also expect to have an ext4 file system for the root directory.

Device 1:

• Device: /dev/sda

• Label: GPT

• Initial Gap: 1 MB

Create three partitions:

• Partition 1:

◦ Partition Number: 1

◦ Partition Size: 1 MB

◦ Partition Type: boot

• Partition 2:

◦ Partition Number: 2

◦ Partition Size: 1024 MB

◦ Partition Type: swap

• Partition 3:

◦ Partition Number: 3

◦ Partition Size: rest

◦ Partition Type: linux

Create two file systems:

• Filesystem 1:

◦ Partition: /dev/sda2

◦ Filesystem: swap

• Filesystem 2:

◦ Partition: /dev/sda3

◦ Filesystem: ext4

◦ Mountpoint: /

1.9. Install Using Yomi

23 / 130 1.9. Install Using Yomi | Uyuni 2024.08

Yomi Bootloader

This sub-form provides details required for GRUB.

Set these parameters:

• Device: /dev/sda

• Theme: selected

The Kernel parameter can be used for the GRUB append section.

Yomi Software

This form provides the different repositories and packages to install. You can also register the product
in this form, using SUSEConnect, and install the different modules after registering.

For this example we are going to install a very minimal openSUSE Tumbleweed distribution, using
publicly available repositories. For production deployments, you will need to provide a local repository.

Add a new repository: * Repository Name: repo-oss * Repository URL: http://download.opensuse.org/
tumbleweed/repo/oss/

Add these packages: * pattern:enhanced_base * glibc-locale * kernel-default

You can also add patterns and products, together with packages, by using the correct prefix.

Yomi Services

By default Yomi is installed with the salt-minion service, but you must enable it.

Add a new enabled service:

• Service 1:

◦ Service: salt-minion

Yomi Users

This form sets out the system users. In this example, we have a single root user. To provide a
password, you must use the hashed version of the password, not the plain text. This behavior
is set to be changed in future versions of Yomi.

• User 1:

◦ Username: root

◦ Password Hash: 1wYJUgpM5$RXMMeASDc035eXNbYWFl0

1.9.5. Monitor the Installation

You can monitor the installation as it progresses, using the monitor tool from Yomi. You can continue
monitoring as the highstate is applied to the new client. To use the tool, you will need to have enabled

1.9. Install Using Yomi

24 / 130 1.9. Install Using Yomi | Uyuni 2024.08

http://download.opensuse.org/tumbleweed/repo/oss/
http://download.opensuse.org/tumbleweed/repo/oss/

Events in the Yomi formula, and have the salt-api service activated.

For more information about the salt-api service, and how to use the monitor tool, see
https://github.com/openSUSE/yomi.

1.10. Configuration Modules
Salt uses execution and state modules to define, apply, and orchestrate configuration of your devices.
Uyuni provides a set of modules called Uyuni configuration modules, that you can use to configure both
SUSE Manager and Uyuni Servers.

You can use the Uyuni configuration modules directly or using SLS files. They are are especially useful if
you have multiple Uyuni Servers, for example in Hub installations, but they are also useful for smaller
installations.

For more information about using Hub, see Specialized-guides › Large-deployments.

You can use Uyuni configuration modules to configure:

• Organizations

• Users

• User permissions

• System groups

• Activation Keys

For more information about Salt execution modules, see https://docs.saltstack.com/en/latest/topics/
tutorials/modules.html.

For more information about Salt state modules, see https://docs.saltstack.com/en/latest/topics/tutorials/
starting_states.html.

1.10.1. Install Configuration Modules

The Uyuni configuration modules are available in the uyuni-config-modules package. On the Uyuni
Server, at the command prompt, as root, use this command:

zypper in uyuni-config-modules

This package also installs detailed API descriptions, indications on pillar settings, and examples. When
you have installed the package, navigate to /usr/share/doc/packages/uyuni-config-
modules/.

1.11. Salt Formulas

1.10. Configuration Modules

25 / 130 1.10. Configuration Modules | Uyuni 2024.08

https://github.com/openSUSE/yomi
https://docs.saltstack.com/en/latest/topics/tutorials/modules.html
https://docs.saltstack.com/en/latest/topics/tutorials/modules.html
https://docs.saltstack.com/en/latest/topics/tutorials/starting_states.html
https://docs.saltstack.com/en/latest/topics/tutorials/starting_states.html

Formulas are collections of Salt States that contain generic parameter fields. Formulas allow for reliable
reproduction of a specific configuration. Some formulas are supplied by SUSE, or you can install formulas
from RPM packages or an external git repository.

Formulas work best for large, non-trivial, configurations. For smaller tasks, use a state rather than a
formula. Formulas and states both act as a kind of configuration documentation. When you have written
and stored the configuration, they provide a snapshot of your infrastructure.

Formula data can be managed using the XMLRPC API.

You can use the Uyuni Web UI to apply Uyuni formulas. The most commonly used formulas are
documented in this section.

Alternatively, you can use pre-written formulas as a starting point for your own custom formulas. Pre-
written formulas are available from https://github.com/saltstack-formulas.

For more information on custom formulas, see Specialized-guides › Salt.

1.11.1. Formulas Provided by Uyuni

Some formulas are installed by default with Uyuni. Other official formulas can be installed as RPM
packages. When the formula is installed, you can activate them using the Uyuni Web UI.

For information about writing custom formulas, see Specialized-guides › Salt.

1.11.1.1. Install Formulas with Zypper

Formulas are provided in the Uyuni pool software channel.

If a formula uses the same name as an existing Salt state, the two names will
collide, and could result in the formula being used instead of the state. Always
check states and formulas to avoid name clashes.

Procedure: Installing Formulas with Zypper

1. On the Uyuni Server, at the command prompt, search for available formulas:

zypper se --type package formula

2. Get more information about a formula:

zypper info <formula_name>

3. On the Uyuni Server, at the command prompt, as root, install the formula:

zypper in <formula_name>

1.11. Salt Formulas

26 / 130 1.11. Salt Formulas | Uyuni 2024.08

https://github.com/saltstack-formulas

1.11.1.2. Activate Formulas from the Web UI

Formulas provided by Uyuni, or formulas that you have installed, can be activated using the Uyuni
Web UI.

Procedure: Activate Formulas from the Web UI

1. In the Uyuni Web UI, navigate to Systems › List, select the client you want to activate the formula
for.

2. Navigate to the Systems › Formulas tab, and check the formula you want to activate.

3. Click Save .

4. Navigate to the new subtab for the formula, and configure the formula as required.

5. Apply the highstate.

1.11.2. Bind Formula

The Bind formula is used to configure the Domain Name System (DNS) on the branch server. POS
terminals will use the DNS on the branch server for name resolution of Saltboot specific hostnames.

When you are configuring the Bind formula for a branch server with a dedicated internal network, check
that you are using the same fully qualified domain name (FQDN) on both the external and internal branch
networks. If the FQDN does not match on both networks, the branch server will not be recognized as a
proxy server.

The following procedure outlines a standard configuration with two zones.
Adjust it to suit your own environment.

Zone 1 is a regular domain zone. Its main purpose is to resolveSaltboot hostnames such as TFTP, FTP, or
Salt. It can also resolve the terminal names if configured.

Zone 2 is the reverse zone of Zone 1. Its main purpose is to resolve IP addresses back to hostnames.
Zone 2 is primarily needed for the correct determination of the FQDNs of the branch.

Procedure: Configuring Bind with Two Zones

1. Check the Bind formula, click Save, and navigate to the Formulas › Bind tab.

2. In the Config section, select Include Forwarders.

3. In the Configured Zones section, use these parameters for Zone 1:

◦ In the Name field, enter the domain name of your branch network (for example:
branch1.example.com).

◦ In the Type field, select master.

4. Click Add item to add a second zone, and set these parameters for Zone 2:

◦ In the Name field, use the reverse zone for the configured IP range (for example:
com.example.branch1).

1.11. Salt Formulas

27 / 130 1.11. Salt Formulas | Uyuni 2024.08

◦ In the Type field, select master

5. In the Available Zones section, use these parameters for Zone 1:

◦ In the Name field, enter the domain name of your branch network (for example:
branch1.example.org).

◦ In the File field, type the name of your configuration file.

6. In the Start of Authority (SOA) section, use these parameters for Zone 1:

◦ In the Nameserver (NS) field, use the FQDN of the branch server (for example:
branchserver.branch1.example.org).

◦ In the Contact field, use the email address for the domain administrator.

◦ Keep all other fields as their default values.

7. In the Records section, in subsection A, use these parameters to set up an A record for Zone 1:

◦ In the Hostname field, use the hostname of the branch server (for example: branchserver).

◦ In the IP field, use the IP address of the branch server (for example, 192.168.1.5).

8. In the Records section, subsection NS, use these parameters to set up an NS record for Zone 1:

◦ In the input box, use the hostname of the branch server (for example: branchserver).

9. In the Records section, subsection CNAME, use these parameters to set up CNAME records for
Zone 1:

◦ In the Key field, enter tftp, and in the Value field, type the hostname of the branch server
(for example: branchserver).

◦ Click Add Item. In the Key field, enter ftp, and in the Value field, type the hostname of the
branch server.

◦ Click Add Item. In the Key field, enter dns, and in the Value field, type the hostname of the
branch server.

◦ Click Add Item. In the Key field, enter dhcp, and in the Value field, type the hostname of
the branch server.

◦ Click Add Item. In the Key field, enter salt, and in the Value field, type the FQDN of the
branch server (for example: branchserver.branch1.example.org).

10. Set up Zone 2 using the same parameters as for Zone 1, but ensure you use the reverse details:

◦ The same SOA section as Zone 1.

◦ Empty A and CNAME records.

◦ Additionally, configure in Zone 2:

▪ Generate Reverse field by the network IP address set in branch server network formula
(for example, 192.168.1.5/24).

1.11. Salt Formulas

28 / 130 1.11. Salt Formulas | Uyuni 2024.08

▪ For Zones should specify the domain name of your branch network (for example,
branch1.example.org).

11. Click Save Formula to save your configuration.

12. Apply the highstate.

Reverse name resolution on terminals might not work for networks that are
inside one of these IPv4 private address ranges:

• 10.0.0.0/8

• 172.16.0.0/12

• 192.168.0.0/16

If you encounter this problem, go to the Options section of the Bind formula,
and click Add item :

• In the Options field, enter empty-zones-enable.

• In the Value field, select No.

1.11.3. Branch Network Formula

The Branch Network formula is used to configure the networking services required by the branch server,
including DHCP, DNS, TFTP, PXE, and FTP.

The formula is used only for connecting Uyuni Proxy 4.3. with Uyuni Server
5.0. Do not use this formula if you want to connect Uyuni Proxy 5.0.

1.11.3.1. Set Up a Branch Server Networking

The branch server can be configured to use networking in many different ways. The most common ways
provide either a dedicated or shared LAN for terminals.

1.11.3.1.1. Set Up a Branch Server with a Dedicated LAN

In this configuration, the branch server requires at least two network interfaces: one acts as a WAN to
communicate with the SUSE Manager server, and the other one acts as an isolated LAN to communicate
with terminals.

This configuration allows for the branch server to provide DHCP, DNS, TFTP, PXE, and FTP services to
terminals. These services can be configured with Salt formulas in the SUSE Manager Web UI.

Procedure: Setting Up a Branch Server with a Dedicated LAN

1. In the SUSE Manager Web UI, open the details page for the branch server, and navigate to the
Formulas tab.

2. In the Branch Network section, set these parameters:

1.11. Salt Formulas

29 / 130 1.11. Salt Formulas | Uyuni 2024.08

◦ Keep Dedicated NIC checked.

◦ In the NIC field, enter the name of the network device that is connected to the internal LAN.

◦ In the IP field, enter the static IP address to be assigned to the branch server on the internal
LAN.

◦ In the Netmask field, enter the network mask of the internal LAN.

3. Check Enable Route if you want the branch server to route traffic from internal LAN to WAN.

◦ Check Enable NAT if you want the branch server to convert addresses from internal LAN to
WAN.

◦ Select the bind DNS forwarder mode.

◦ Check DNS forwarder fallback if you want to rely on an external DNS if the branch DNS fails.

◦ Specify the working directory, and the directory owner and group.

1.11.3.1.2. Set up a Branch Server with a Shared Network

In this configuration, the branch server has only one network interface card, which is used to connect to
the SUSE Manager server as well as the terminals.

This configuration allows for the branch server to provide DNS, TFTP, PXE, and FTP services to
terminals. These services can be configured with Salt formulas in the SUSE Manager Web UI. Optionally,
the branch server can also provide DHCP services in this configuration.

If DHCP services are not provided by the branch server, ensure that your
external DHCP configuration is set correctly:

• The next-server option must point to the branch server for PXE boot to
work.

• The filename option must correctly identify the network boot program
(by default, this is /boot/pxelinux).

• The domain-name-servers option must point to the branch server for
correct host name resolution.

Procedure: Setting Up a Branch Server with a Shared Network

1. In the SUSE Manager Web UI, open the details page for the branch server, and navigate to the
Formulas tab.

2. In the Branch Network section, set these parameters:

◦ Keep Dedicated NIC unchecked.

◦ Enable services on the branch server’s firewall. Ensure you include DNS, TFTP, and FTP
services.

◦ Select the bind DNS forwarder mode.

1.11. Salt Formulas

30 / 130 1.11. Salt Formulas | Uyuni 2024.08

◦ Check DNS forwarder fallback if you want to rely on an external DNS if the branch DNS fails.

◦ Specify the working directory, and the directory owner and group.

1.11.3.2. Set up Branch Server Terminal Naming

In this configuration it is required to fill at least Branch Identification. This identifies Branch
Server in Retail subsystem and is also used to better organize terminals with their respective branch
servers.

Procedure: Setting up a Branch Server Identification

1. In the SUSE Manager Web UI, open the details page for the branch server, and navigate to the
Formulas tab.

2. In the Terminal Naming section, enter the Branch Identification string.

3. Click Save to save your changes.

4. Apply the highstate.

It is also possible to set various options about terminal naming, for more information about terminal
naming see Retail › Retail-terminal-names.

1.11.4. DHCPd Formula

The DHCPd formula is used to configure the DHCP service on the branch server.

Procedure: Configuring DHCP

1. In the SUSE Manager Web UI, open the details page for the branch server, and navigate to the
Formulas tab.

2. Check the Dhcpd formula, and click Save .

3. Navigate to the Formulas › Dhcpd tab, and set these parameters:

◦ In the Domain Name field, enter the domain name for the branch server (for example:
branch1.example.com).

◦ In the Domain Name Server field, enter either the IP address or resolvable FQDN of the
branch DNS server (for example: 192.168.1.5).

◦ In the Listen Interfaces field, enter the name of the network interface used to connect to
the local branch network (for example: eth1).

4. Navigate to the Network Configuration (subnet) section, and use these parameters for
Network1:

◦ In the Network IP field, enter the IP address of the branch server network (for example:
192.168.1.0).

◦ In the Netmask field, enter the network mask of the branch server network (for example:
255.255.255.0).

1.11. Salt Formulas

31 / 130 1.11. Salt Formulas | Uyuni 2024.08

◦ In the Domain Name field, enter the domain name for the branch server network (for example:
branch1.example.com).

5. In the Dynamic IP Range section, use these parameters to configure the IP range to be served by
the DHCP service:

◦ In the first input box, set the lower bound of the IP range (for example: 192.168.1.51).

◦ In the second input box, set the upper bound of the IP range (for example: 192.168.1.151).

6. In the Broadcast Address field, enter the broadcast IP address for the branch network (for
example: 192.168.1.255).

7. In the Routers field, enter the IP address to be used by routers in the branch server network (for
example: 192.168.1.5).

8. In the Next Server field, enter the hostname or IP address of the branch server (for example:
192.168.1.5).

9. In the Filename field, if you are booting a client using PXE, type the path to the PXE bootloader.
There is usually no need to change the default value of /boot/pxelinux.0.

10. In the Filename Efi field, if you are booting a UEFI client using PXE, type the path to the PXE
bootloader. There is usually no need to change the default value of /boot/shim.efi.

11. In the Filename Http field, if you are booting a UEFI client using HTTP, type
http://branchserver/saltboot/boot/shim.efi.

12. Click Save Formula to save your configuration.

13. Apply the highstate.

1.11.5. Image Synchronization Formula

The Image Synchronization formula is used to configure when OS images are synchronized to the branch
server, and to specify which images to synchronize.

If this formula is not enabled, synchronization must be started manually, and all images will be
synchronized.

Procedure: Configuring Image Synchronization

1. In the SUSE Manager Web UI, open the details page for the branch server, and navigate to the
Formulas tab.

2. Check the Image Synchronize formula, and click Save .

3. Navigate to the Formulas › Image Synchronize tab, and set these parameters:

◦ Check the Include Image Synchronization in Highstate field to have image
synchronization occur every time highstate is applied. This ensures that you do not have to
perform image synchronization manually, however it requires a high bandwidth environment.

◦ In the Synchronize only the listed images field, click Add item to add the images

1.11. Salt Formulas

32 / 130 1.11. Salt Formulas | Uyuni 2024.08

http://branchserver/saltboot/boot/shim.efi
http://branchserver/saltboot/boot/shim.efi
http://branchserver/saltboot/boot/shim.efi
http://branchserver/saltboot/boot/shim.efi
http://branchserver/saltboot/boot/shim.efi
http://branchserver/saltboot/boot/shim.efi
http://branchserver/saltboot/boot/shim.efi

you want to have synchronized automatically. Alternatively, you can leave this list blank to have
all images synchronized.

4. Click Save Formula to save your configuration.

5. Apply the highstate.

The Image Synchronization state does not delete cached images. If you are
running out of disk space, check the size of the Salt client cache directory, and
delete it if required. By default, the directory is located at
/var/cache/salt/minion.

1.11.6. Liberate Formula

The liberate formula migrates systems from EL clients such as AlmaLinux, CentOS 7, Oracle Linux 9,
Rocky Linux 9, or even Red Hat Enterprise Linux 9 to SUSE Liberty Linux. With this formula the
conversion will take place during the client onboarding on Uyuni.

 The Liberate Formula comes preinstalled within the server container.

1.11.6.1. Configure Uyuni

To provide all the software channels for SUSE Liberty Linux on the Uyuni Server, proceed as follows.

Procedure: Providing SUSE Customer Center credentials

1. Sign in to SUSE Customer Center at https://scc.suse.com.

2. Navigate to My Organization, and select your organization.

3. Navigate to Users › Organization Credentials and take note of your organization username and
password.

4. In the Uyuni Web UI, navigate to Admin › Setup Wizard › Organization Credentials to add the
credentials to your Uyuni Server.

5. Click Add new credential , and enter the SUSE Customer Center username and password noted in a
previous step.

Procedure: Synchronizing the SLL/SLES-ES channels:

1. In the Uyuni Web UI, navigate to Admin › Setup Wizard › Products

2. Select the SUSE Liberty Linux Channels that you will use:

◦ EL7 LTSS: SUSE Linux Enterprise Server with Expanded Support LTSS 7
x86_64

◦ EL7: SUSE Linux Enterprise Server with Expanded Support 7 x86_64

◦ EL8: RHEL or SLES ES or CentOS 8 Base

◦ EL9: RHEL and Liberty 9 Base

1.11. Salt Formulas

33 / 130 1.11. Salt Formulas | Uyuni 2024.08

https://scc.suse.com

3. Click the top right button Add products .

Initial sychronization can take considerable time. You can check progress by accessing the server machine
via SSH and monitoring the logs using:

tail -f /var/log/rhn/reposync/*

Procedure: Creating one Activation Key per SUSE Liberty Linux parent channel

1. Note: Activation Keys are the way to register systems and automatically assign them to the required
software and configuration channels corresponding to them.

2. In the Uyuni Web UI, navigate to Systems › Activation Keys, and click the top right button Create
key .

3. In the Activation Key dialog, set the fields:

Description

Enter some text describing the activation key.

Key

Enter the identifier of the key. For example [literalsll9-default for EL 9 systems. Note: Keys
will have a numeric prefix depending on the organization, so that they are unique.

Usage

Leave blank.

Base Channel

Select one base channel:

◦ EL7 LTSS: RES-7-LTSS-Updates for x86_64

◦ EL7: RHEL x86_64 Server 7

◦ EL8: RHEL8-Pool for x86_64

◦ EL9: EL9-Pool for x86_64

Child Channel

Include all child channels.

Add-On system type

Leave all blank.

Contact Method

Default

Universal Default

Leave unchecked.

1.11. Salt Formulas

34 / 130 1.11. Salt Formulas | Uyuni 2024.08

4. Click Create Activation Key .

1.11.6.2. Add Liberate formula and assign it to activation keys

When installed, the formula can be assigned to an Activation Key by creating a System Group:

Procedure: Assigning system group and assigning liberate formula

1. In the Uyuni Web UI, navigate to Systems › System Groups, and click the Create Group button in
top right corner.

2. In the dialog, fill in the following data:

Name

liberate

Description

Systems to be converted to SUSE Liberty Linux

3. From the liberate System Group page, navigate go to the Formulas tab.

4. Select the Liberate formula, and click Save . A new tab called Liberate will appear.

5. On the Liberate tab, you see the Reinstall all packages after conversion option.
Keep it checked if you want to reinstall all the packages during the migration. This way you ensure
all the packages will have SUSE signatures and no previous package will be kept. If you do not want
to change the state of your system during the migration, uncheck this option and click the Save
Formula button. In this case, you can re-install the packages later.

Now a system group exists that has assigned the Liberate formula. This formula will be applied only
once to migrate the system to SUSE Liberty Linux, even if you run it multiple times. With the next
procedure, assign the system group to the Activation Key.

Procedure: Assigning the system group to the Activation Key

1. In the Uyuni Web UI, navigate to Systems › Activation Keys.

2. Select the Activation Key, for example sll9-default for the EL 9 systems.

3. From the Activation Key page navigate to the Groups › Join tab, select the liberate group, and
click the Join Selected Groups button. The group will be assigned to the Activation Key

Procedure: Applying migrate directly during registration

1. From the Activation Key page, navigate to the Details tab.

2. Navigate to the Configuration File Deployment section, and checkb the Deploy
configuration files to systems on registrationoption.

3. Click Update Activation Key .

When you register a system with this key it will perform the migration automatically.

1.11. Salt Formulas

35 / 130 1.11. Salt Formulas | Uyuni 2024.08

1.11.6.3. Register a new system and proceed to the migration

There are two ways to onboard (or register) a new client with the Activation Key:

Client-configuration › Registration-webui

This is intended for a one-off registration or for testing purposes.

Client-configuration › Registration-bootstrap

This is intended to be used for mass registration.

1.11.6.4. For already registered clients

Software channels, system group membership, and formulas can be assigned to any already registered
client. This method makes use of the bootstrap script mentioned above.

Procedure: Creating an Reactivation key

1. In the Uyuni Web UI, open the System Details page of any registered client you want to migrate to
SUSE Liberty Linux.

2. Click the Reactivation tab. If there is already a key listed, you can use it. If not, click Generate
New Key , and copy the entire key. The key will start with re-.

3. SSH into this client and set the environment variable to be the key that you copied:

export REACTIVATION_KEY=re-xxxxxxxxxxxxxx

4. Run the bootstrap script from Client-configuration › Registration-bootstrap, and the system will
re-register using the same profile as before, but with the newly assigned SUSE Liberty Linux context.

1.11.7. Monitoring Formula

The monitoring services in Uyuni are configured using formulas with forms. The package is installed by
default, and contains these formulas:

• Grafana

• Prometheus

• Prometheus Exporters

For more information about using monitoring, see Administration › Monitoring.

1.11.7.1. Grafana

Procedure: Configuring the Grafana Formula

1. Navigate to the Formulas › Grafana tab, and set these parameters in the Grafana section:

◦ Check the Enabled box to enable Grafana visualizations.

1.11. Salt Formulas

36 / 130 1.11. Salt Formulas | Uyuni 2024.08

Initial admin password is used on the first run only, and
Grafana UI prompts to change it. This field cannot be used to change
the Grafana password. For more information on how to change the
password, see Administration › Monitoring.

2. For each Prometheus data source you want to use, in the Datasources › Prometheus section, click
+ , and set these parameters:

◦ In the Datasource name field, type a name to identify the data source.

◦ In the Prometheus URL field, type the used protocol, the location of the Prometheus server,
and append port 9090. For example, http://example.com:9090. In case TLS encryption
is enabled in Prometheus formula make sure to use https protocol and FQDN.

◦ In the fields Prometheus server username and Prometheus server password,
enter basic authentication credentials for Prometheus server matching the ones in Prometheus
formula.

3. In the Dashboards section, check the dashboards you want to use:

◦ Uyuni server dashboard

◦ Uyuni clients dashboard

◦ PostgreSQL dashboard

◦ Apache HTTPD dashboard

◦ Kubernetes cluster dashboard

◦ Kubernetes etcd dashboard

◦ Kubernetes namespaces dashboard

4. Click Save Formula to save your configuration.

1.11.7.2. Prometheus

Procedure: Configuring the Prometheus Formula

1. Navigate to the Formulas › Prometheus tab, and set these parameters in the Prometheus section:

◦ Check the Enabled box to enable Prometheus monitoring.

◦ In the Scrape interval field, type the frequency of data scraping, in seconds. For example,
15 will scrape data every fifteen seconds.

◦ In the Evaluation interval field, type the frequency of rules evaluation, in seconds. For
example, 15 will evaluate alerting and aggregation rules every fifteen seconds.

2. In the TLS section, set these parameters:

◦ Check the Enabled box to enable the secure configuration on Prometheus server.

◦ In the Server Certificate field, type the path to the TLS server certificate.

1.11. Salt Formulas

37 / 130 1.11. Salt Formulas | Uyuni 2024.08

http://example.com:9090

◦ In the Server Key field, type the path to the TLS server key.

◦ In the User field, type the user name for Prometheus server.

◦ In the Password Hash field, type the password for Prometheus server hashed with bcrypt.

3. In the Uyuni Server section, set these parameters:

◦ Check the Enabled box to enable monitoring on this server.

◦ Check the Autodiscover clients box to enable Prometheus to automatically find and
monitor new clients when they are added to the server.

◦ In the Username field, type the user name of the Prometheus account on the server.

◦ In the Password field, type the password of the Prometheus account on the server.

◦ In the Targets TLS section, set these parameters:

▪ Check the Enabled box to enable the secure configuration for auto-discovered targets.

▪ In the CA Certificate field, type the path to the Certificate Authority certificate.

▪ In the Client Certificate field, type the path to the TLS client certificate for
authentication.

▪ In the Client Key field, type the path to the TLS client key for authentication.

4. In the Alerting section, set these parameters:

◦ Check the Enable local Alertmanager service box to enable the alert manager
service.

◦ Check the Use local Alertmanager box to use the local alert manager service.

5. For each alert manager you want to use, in the Alerting › Alertmanagers section, click + , and set
these parameters:

◦ In the IP Address:Port field, type the location of the alert manager target, including the
port number.

6. To use a rule file, in the Alerting › Rule Files section, click + , and set these parameters:

◦ In the Rule Files field, type the location of the rule file you want to use.

7. To add a custom scrape configuration, in the User defined scrape configurations
section, click + , and set these parameters:

◦ In the Job name field, type a unique job name for your configuration.

◦ In the Files field, type the location pattern of file service discovery files you want to use. For
more information, see the upstream documentation https://prometheus.io/docs/prometheus/
latest/configuration/configuration/#file_sd_config.

8. Click Save Formula to save your configuration.

The formula does not generate and deploy the TLS certificates and keys. Ensure

1.11. Salt Formulas

38 / 130 1.11. Salt Formulas | Uyuni 2024.08

https://prometheus.io/docs/prometheus/latest/configuration/configuration/#file_sd_config
https://prometheus.io/docs/prometheus/latest/configuration/configuration/#file_sd_config

the files are present on the Salt client and readable for the user prometheus
before applying the highstate. For more information about generating client and
server certificates, see Administration › Monitoring.

1.11.7.3. Prometheus Exporters

Procedure: Configuring the Prometheus Exporters Formula

1. Navigate to the Formulas › Prometheus Exporters tab, and set these parameters in the Node
Exporter section:

◦ Check the Enabled box to enable the node exporter.

◦ In the Arguments field, type any customized arguments for this exporter. For example,
--web.listen-address=":9100".

2. In the Apache Exporter section:

◦ Check the Enabled box to enable the Apache exporter.

◦ In the Arguments field, type any customized arguments for this exporter. For example,
--telemetry.address=":9117".

3. In the Postgres Exporter section:

◦ Check the Enabled box to enable the PostreSQL exporter.

◦ In the Data source Name field, type the name of the data source to use.

◦ In the Arguments field, type any customized arguments for this exporter. For example,
--web.listen-address=":9187".

4. In the TLS section:

◦ Check the Enabled box to enable the secure configuration.

◦ In the CA Certificate field, type the path to the Certificate Authority certificate.

◦ In the Server Certificate field, type the path to the TLS server certificate.

◦ In the Server Key field, type the path to the TLS server key.

5. Click Save Formula to save your configuration.

1.11.7.3.1. File-based service discovery

It is possible to define monitored targets using file-based service discovery provided in the Prometheus
formula. This is a basic example demonstrating the usage:

[
 {
 "targets": ["<client1>:9100", "<client2>:9100"],
 "labels": {
 "role": "<suma-client>",
 "job": "<suma-refclient>"
 }

1.11. Salt Formulas

39 / 130 1.11. Salt Formulas | Uyuni 2024.08

 },
 {
 "targets": ["<server>:80"],
 "labels": {
 "role": "<suma-server>",
 "job": "<suma-refhost>",
 "__metrics_path__": "/rhn/metrics"
 }
 }
]

For more information, see https://prometheus.io/docs/guides/file-sd/.

1.11.7.3.2. TLS certificates and keys

The formula does not generate and deploy the TLS certificates and keys. Ensure the files are present on
the Salt client and readable for the user prometheus before applying the highstate. For more information
about generating client and server certificates, see Administration › Monitoring.

1.11.7.4. Activate Forms

When you have completed and saved all the forms, apply the highstate.

For more information about using monitoring, see Administration › Monitoring.

1.11.8. PXE Formula

The PXE formula is used to configure PXE booting on the branch server.

The formula is used only for connecting Uyuni Proxy 4.3. with Uyuni Server
5.0. Do not use this formula if you want to connect Uyuni Proxy 5.0.

Procedure: Configuring PXE Booting

1. In the SUSE Manager Web UI, open the details page for the branch server, and navigate to the
Formulas tab.

2. Select the Pxe formula, and click Save.

3. Navigate to the Formulas › Pxe tab, and set these parameters:

◦ In the Kernel Filename field, keep the default value.

◦ In the Initrd Filename field, keep the default value.

◦ If the terminals connecting to this branch server are running arm64 architecture, check the
Enable ARM64 UEFI boot box. Leave unchecked for x86-64.

◦ In the Kernel Filename for ARM64 field, keep the default value.

◦ In the Initrd Filename for ARM64 field, keep the default value.

◦ In the Kernel Command Line Parameters field, keep the default value. For more
information about possible values, see Saltboot Kernel Command Line Parameters.

1.11. Salt Formulas

40 / 130 1.11. Salt Formulas | Uyuni 2024.08

https://prometheus.io/docs/guides/file-sd/

◦ In the PXE root directory field, enter the path to the Saltboot directory (for example,
/srv/saltboot).

4. Click Save Formula to save your configuration.

5. Apply the highstate.

1.11.8.1. Saltboot Kernel Command Line Parameters

Saltboot supports common kernel parameters and Saltboot-specific kernel parameters. All the parameters
can be entered in the Kernel Command Line Parameters field of the PXE formula.

kiwidebug=1

Starts a shell on tty2 during boot and enables debug logging in Salt.

Do not use this parameter in a production environment as it creates a major
security hole. This parameter should be used only in a development
environment for debug purposes.

MASTER

Overrides auto-detection of the Salt master. For example:

MASTER=myproxy.domain.com

SALT_TIMEOUT

Overrides the local boot fallback timeout if the Salt master does not apply the Saltboot state within
this timeout (default: 60 seconds). For example:

SALT_TIMEOUT=300

DISABLE_HOSTNAME_ID

If the terminal has a hostname assigned by DHCP, it is by default used as a minion ID. Setting this
option to 1 disables this mechanism, and SMBios information will be used as a minion ID.

DISABLE_UNIQUE_SUFFIX

Setting this option to 1 disables adding random generated suffix to terminal minion ID.

If you set this parameter make sure your terminal has either a unique hostname provided by DHCP
and DNS, or the terminal hardware comes with a unique serial number stored in its SMBios memory.
Otherwise there is a risk of terminal minion ID duplicity, and bootstrapping the minion will fail.

The following parameters (MINION_ID_PREFIX, salt_device, root) are usually autoconfigured and
should be used only in specific conditions such as debugging or development:

1.11. Salt Formulas

41 / 130 1.11. Salt Formulas | Uyuni 2024.08

MINION_ID_PREFIX

Branch ID set in the Branch Network formula form.

salt_device

Device that contains the Salt configuration.

root

Device that contains the already deployed root file system. Used for falling back to local boot.

1.11.9. Saltboot Formula

The Saltboot formula is used to configure disk images and partitioning for the selected hardware type.

The Saltboot formula is meant to be used as a group formula. Enable and
configure Saltboot formula for hardware type groups.

To apply changes to a terminal, terminal needs to be restarted. Applying
highstate does not have any effect on running terminals.

Procedure: Configuring the Hardware Type Group with Saltboot

1. Open the details page for your new hardware type group, and navigate to the Formulas tab.

2. Select the Saltboot formula and click Save .

3. Navigate to the Formulas › Saltboot tab.

4. In the Disk 1 section, set these parameters:

◦ In the Disk symbolic ID field, enter a custom name for the disk (for example, disk1).

◦ In the Device type field, select DISK.

◦ In the Disk device field, select the device that corresponds to the device name on the target
machine or asterisk *, see Disk Selection in Saltboot Formula.

◦ In the RAID level field, leave it empty.

◦ In the Disk Label field, select gpt.

5. In the Partition section, set these parameters for Partition 1:

◦ In the Partition symbolic ID field, enter a custom name for the partition (for example,
p1).

◦ In the Partition size use value 500.

◦ In the Device mount point use /boot/efi.

◦ In the Filesystem format use vfat.

◦ In the OS Image to deploy field, leave it empty.

1.11. Salt Formulas

42 / 130 1.11. Salt Formulas | Uyuni 2024.08

◦ In the Partition encryption password field, leave it empty.

◦ In the Partition flags use boot.

6. In the Partition section, set these parameters for Partition 2:

◦ In the Partition symbolic ID field, enter a custom name for the partition (for example,
p2).

◦ In the Partition size field, specify a size for the partition in Mebibytes (MiB).

◦ In the Device mount point field, select a location to mount the partition (for example,
/data).

◦ In the Filesystem format field, select your preferred format (for example, xfs).

◦ In the OS Image to deploy field, leave it empty.

◦ In the Partition encryption password field, enter a password if you want to encrypt
the partition.

◦ In the Partition flags field, leave it empty.

7. In the Partition section, set these parameters for Partition 3:

◦ In the Partition symbolic ID field, enter a custom name for the partition (for example,
p3).

◦ In the Partition size field, specify a size for the partition in Mebibytes (MiB).

◦ In the Device mount point field, leave it empty.

◦ In the Filesystem format field, select swap.

◦ In the OS Image to deploy field, leave it empty.

◦ In the Partition encryption password field, enter a password if you want to encrypt
the partition.

◦ In the Partition flags field, select swap.

8. In the Partition section, set these parameters for Partition 4:

◦ In the Partition symbolic ID field, enter a custom name for the partition (for example,
p4).

◦ In the Partition size field, leave it empty. This will ensure the partition uses up all
remaining space.

◦ In the Device mount point field, select /.

◦ In the Filesystem format field, leave it empty.

◦ In the OS Image to deploy field, enter the name of the image to deploy.

◦ In the Image version field, leave it empty. This will ensure you use the latest available
version.

1.11. Salt Formulas

43 / 130 1.11. Salt Formulas | Uyuni 2024.08

◦ In the Partition encryption password field, enter a password if you want to encrypt
the partition.

◦ In the Partition flags field, leave it empty.

9. Click Save Formula to save your configuration.

1.11.9.1. Special Partition Types

The Saltboot formula helps you with setting up special partition types.

For terminal to be able to boot locally, either BIOS grub or EFI partition must
be configured.

1.11.9.1.1. BIOS grub Partition

A BIOS grub partition is needed for local booting from a GPT disk on non-EFI machines. For more
information, see https://en.wikipedia.org/wiki/BIOS_boot_partition.

In the formula, enter the following options:

Partition Symbolic ID: p1
Partition Size (MiB): 50
Partition Flags: bios_grub

Leave the other fields empty.

1.11.9.1.2. EFI Partition

An EFI partition is needed for local booting on EFI machines, Partition Table Type must be GPT.
For more information, see https://en.wikipedia.org/wiki/EFI_system_partition.

In the formula, enter the following options:

Partition Symbolic ID: p1
Partition Size (MiB): 500
Device Mount Point: /boot/efi
Filesystem Format: vfat
Partition Flags: boot

Leave the other fields empty.

1.11.9.2. Disk Selection in Saltboot Formula

When there is only one disk present on target hardware (including USB drives), use an asterisk * to
automatically select the disk device.

When there are multiple disks, use an asterisk * in the device path. In this example, SATA disks are
differentiated from USB disks:

1.11. Salt Formulas

44 / 130 1.11. Salt Formulas | Uyuni 2024.08

https://en.wikipedia.org/wiki/BIOS_boot_partition
https://en.wikipedia.org/wiki/EFI_system_partition

/dev/disk/by-path/*-ata-1
/dev/disk/by-path/*usb*

If the entered value does not contain /, the entered value is automatically prepended by
/dev/disk/by-path/. For example, *usb* is the same as /dev/disk/by-path/*usb*.

If you prefer to select specific devices, you can this format in the disk device field:

• symbolic names (for example: /dev/sda)

• by-path (for example: /dev/disk/by-path/..)

• by-id (for example: /dev/disk/by-id/…)

To see a list of available devices from the command prompt, press Esc while waiting for key approval.

1.11.9.3. Troubleshooting the Saltboot Formula

msdos Disklabel Limitations

On the msdos disk label, you can create a maximum of four primary partitions. Extended partitions
are not supported. If you need more than four partitions, use the GPT disk label instead.

1.11.10. TFTPd Formula

The TFTPd formula is used to configure the TFTP service on the Uyuni for Retail branch server.

The formula is used only for connecting Uyuni Proxy 4.3. with Uyuni Server
5.0. Do not use this formula if you want to connect Uyuni Proxy 5.0.

Procedure: Configuring TFTP

1. In the SUSE Manager Web UI, open the details page for the branch server, and navigate to the
Formulas tab.

2. Select the Tftpd formula, and click Save .

3. Navigate to the Formulas › Tftpd tab, and set these parameters:

◦ In the Internal Network Address field, enter the IP address of the branch server (for
example: 192.168.1.5).

◦ In the TFTP Base Directory field, enter the path to the Saltboot directory (for example,
/srv/saltboot).

◦ In the Run TFTP Under User field, enter saltboot.

4. Click Save Formula to save your configuration.

5. Apply the highstate.

1.11. Salt Formulas

45 / 130 1.11. Salt Formulas | Uyuni 2024.08

1.11.11. Virtualization Guest Formula

The Virtualization Guest formula is used to configure settings for virtual machine.

Open the Tuning pull-down checklist and select from the following virtual machine performance tuning
settings:

• Disable IRQ balancing.

• Disable Kernel Samepage Merging (KSM). Reduces performance overhead by not sharing
memory across virtual machines.

• Optimizations for KVM passed through host CPU. Requires the KVM hint-dedicated
option to be set on the VM definition.

When configured, click Save Formula to save your configuration, and apply the highstate.

1.11.12. Virtualization Host Formula

The Virtualization Host formula is used to configure settings for a virtualization host.

Hypervisor

Select KVM or Xen as the hypervisor.

Create default storage pool

Create default virtual network

• Default pool: Open the pull-down list and enter the directory name of the default storage pool.

• Default net: Open the pull-down list and configure the default virtual network by setting the
Mode (NAT or Bridge) and the Bridge name.

Tuning

Enable IOMMU support (x86_64).

When configured, click Save Formula to save your configuration, and apply the highstate.

1.11.13. Yomi Formula

The Yomi (yet one more installer) installer for SUSE and openSUSE operating systems is configured
using formulas with forms.

The yomi-formula package provides these formulas:

• Yomi

• Yomi Storage

• Yomi Bootloader

• Yomi Software

1.11. Salt Formulas

46 / 130 1.11. Salt Formulas | Uyuni 2024.08

• Yomi Services

• Yomi Users

Procedure: Install the Yomi Formulas with Forms

1. On the Uyuni Server, at the command prompt, as root, install the yomi-formula package:

zypper in yomi-formula

2. Restart services:

systemctl restart salt-master.service

When the formula package is installed, you need to install the PXE Yomi image on the client, boot the
client you want to provision, and enable the Yomi formulas on the client. For more information on
preparing Yomi clients for provisioning, see Specialized-guides › Salt.

Procedure: Configuring the Yomi Formula

1. Navigate to the Formulas › Yomi tab, and set these parameters in the General Configuration
section:

◦ Check the Events box to allow monitoring.

◦ In the Reboot field, select yes to instruct the client to reboot after installation.

◦ Check the Snapper box if you are using the btrfs file system on the client.

◦ In the Locale field, select the region and encoding for systemd to use on the client. For
example: en_US.utf8 for US English and UTF-8.

◦ In the Keymap field, select the appropriate keyboard layout. For example: us for a US keyboard
layout.

◦ In the Timezone field, select the timezone for the client to use. For example:
America/New_York for EST.

◦ In the Hostname field, enter the hostname for the client to use. Leave this blank if you are
using DHCP to provide the hostname.

◦ In the Machine Id field, enter a machine identification number for the client. Leave this blank
to have systemd generate one automatically.

◦ In the Target field, enter a systemd target unit.

2. Click Save Formula to save your configuration.

Procedure: Configuring the Yomi Storage Formula

1. Navigate to the Formulas › Yomi Storage tab, and set these parameters in the Partitions › Config
section:

1.11. Salt Formulas

47 / 130 1.11. Salt Formulas | Uyuni 2024.08

◦ In the Labels field, select the default partition table type to use.

◦ In the Initial Gap field, select the default amount of space to leave before the first partition.
For example: 1 MB, or use 0 to leave no space between partitions.

2. For each device that you want to configure, in the Partitions › Devices section, click + , and set these
parameters:

◦ In the Device field, type the mount point for the device. For example, /dev/sda.

◦ In the Label field, select the partition table type to use, if it is different from the default label
you selected.

◦ In the Initial Gap field, select the amount of space to leave before the first partition, if it is
different from the default space you specified.

3. For each partition that you want to create, in the Partitions › Devices › Partitions section, click + ,
and set these parameters:

◦ In the Partition Number field, enter a number for the partition. The number you enter here
is appended to the device name to identify the partition. For example, partition number 1 on
device /dev/sda can be identified as /dev/sda1.

◦ In the Partition Name field, enter a name for the partition. Leave this blank if you have
entered a partition number in the previous field.

◦ In the Partition Size field, enter a size for the partition. For example: 500 MB. Use rest
to use all the remaining free space.

4. For each file system that you want to create, in the Filesystems section, click + , and set these
parameters:

◦ In the Partition field, select the partition to create the file system on. For example,
/dev/sda1.

◦ In the Filesystem field, select the file system type to create.

◦ In the Mountpoint field, type the mount point for the file system. For example: / for root.

5. Click Save Formula to save your configuration.

If you want to use LVM or RAID on your devices, click + in the appropriate
sections, and complete the details for your environment.

Procedure: Configuring the Yomi Bootloader Formula

1. Navigate to the Formulas › Yomi Bootloader tab, and set these parameters in the Bootloader
section:

◦ In the Device field, type the path for the bootloader. For example, /dev/sda.

◦ In the Timeout field, select the number of seconds grub will wait before booting the default
menu entry.

◦ In the Kernel field, type any additional kernel parameters you want to use. Any kernel

1.11. Salt Formulas

48 / 130 1.11. Salt Formulas | Uyuni 2024.08

parameters you add here will be appended to the GRUB_CMDLINE_LINUX_DEFAULT line
during boot.

◦ In the Terminal field, type the terminal to use for both terminal input and output.

◦ In the Serial Command field, type parameters for using the serial port. Use this only if you
are using the serial console as the default terminal.

◦ In the Gfxmode field, type the resolution to use for the graphical terminal. Use this only if you
are using the graphical console as the default terminal.

◦ Check the Theme box to use GRUB2 default branding package.

◦ Check the Disable OS Prober box to disable using the OS prober to discover other installed
operating systems.

2. Click Save Formula to save your configuration.

Procedure: Configuring the Yomi Software Formula

1. Navigate to the Formulas › Yomi Software tab, and set these parameters in the Software ›
Configuration section:

◦ Check the Minimal box to use a minimal installation, which only installs packages listed as
Required.

2. For each repository that you want to add, in the Software › Repositories section, click + , and set
these parameters:

◦ In the Repository Name field, type a name for the repository.

◦ In the Repository URL field, type the location of the repository.

3. To add packages from each repository, in the Software › Packages section, click + , and set these
parameters:

◦ In the Software › Packages field, type the names of the packages to install, or type a pattern to
search for the appropriate packages. For example, pattern:enhanced_base glibc-
locale, or kernel-default.

4. In the Software › Image section, set these parameters:

◦ In the Image URL field, type the location of the operating system ISO image to use.

◦ In the Md5 field, type the MD5 hash to use to verify the ISO.

5. In the SUSEConect › Config section, set these parameters:

◦ In the Registration Code field, type the registration code for the client you are installing.
You can obtain this code from SUSE Customer Center.

◦ In the Email field, type the administrator email address to use.

◦ In the Url field, type the address of the registration server to use. For example, use
https://scc.suse.com, to register with SUSE Customer Center.

1.11. Salt Formulas

49 / 130 1.11. Salt Formulas | Uyuni 2024.08

https://scc.suse.com

◦ In the Version field, type the version of the product you are registering.

6. For each product that you want to register, in the SUSEConnect › Products section, click + , and set
these parameters:

◦ In the Product field, type each product you want to register. For example,
<product_name>/1.1/x86, for version 1.1 with x86 architecture.

◦ In the SUSEConnect › Packages field, type the names of the packages to install, or type a
pattern to search for the appropriate packages. For example, pattern:enhanced_base
glibc-locale, or kernel-default.

7. Click Save Formula to save your configuration.

Procedure: Configuring the Yomi Services Formula

1. Navigate to the Formulas › Yomi Services tab, and set these parameters:

◦ Check the Install salt-minion box to install and configure the client as a Salt client.

2. For each service you want to enable, in the Services › Enabled section, click + , and set these
parameters:

◦ In the Service field, type the name of the service to enable. For example, salt-minion.

3. For each service you want to disable, in the Services › Disabled section, click + , and set these
parameters:

◦ In the Service field, type the name of the service to disable.

4. Click Save Formula to save your configuration.

Procedure: Configuring the Yomi Users Formula

1. Navigate to the Formulas › Yomi Users tab.

2. For each user you want to create, in the Users section, click + , and set these parameters:

◦ In the Username field, type the name of the new user.

◦ In the Password Hash field, type the hashed version of the password to use.

3. To add a certificate for each user, in the Users › Certificates section, click + , and add the certificate
to the Certificate field.

4. Click Save Formula to save your configuration.

When you have completed and saved all the forms, apply the highstate.

For more information about using Yomi, see Specialized-guides › Salt.

1.11.14. Custom Salt Formulas

This section contains information about writing custom formulas, including formulas with forms. You can
write your own custom formulas, and make them available to client systems in the Uyuni Web UI.

1.11. Salt Formulas

50 / 130 1.11. Salt Formulas | Uyuni 2024.08

For information about the formulas provided by Uyuni, see Specialized-guides › Salt.

1.11.14.1. File Structure Overview

RPM-based formulas must be placed in a specific directory structure to ensure that they work correctly. A
formula contains two separate directories: states, and metadata. Folders in these directories need to
have exactly matching names.

The formula states directory contains anything necessary for a Salt state to work independently. This
includes .sls files, a map.jinja file and any other required files. This directory should only be
modified by RPMs and should not be edited manually. For example, the locale-formula states
directory is located in:

/usr/share/susemanager/formulas/states/locale/

To create formulas with forms, the metadata directory contains a form.yml file. The form.yml file
defines the forms for Uyuni. The metadata directory also contains an optional metadata.yml file with
additional information about the formula. For example, the locale-formula metadata directory is
located in:

/usr/share/susemanager/formulas/metadata/locale/

If you have a custom formula that is not in an RPM, it must be in a state directory configured as a Salt file
root. Custom state formula data must be in:

/srv/salt/<custom-formula-name>/

Custom metadata information must be in:

/srv/formula_metadata/<custom-formula-name>/

All custom folders must contain a form.yml file. These files are detected as form recipes and are applied
to groups and systems from the Web UI:

/srv/formula_metadata/<custom-formula-name>/form.yml

The Salt formula directory changed in Uyuni 4.0. The old directory location,
/usr/share/susemanager/formulas, will continue to work for some
time. You should ensure that you update to the new directory location,
/usr/share/salt-formulas/ as soon as possible.

1.11.14.2. Define Formula with Forms Data

1.11. Salt Formulas

51 / 130 1.11. Salt Formulas | Uyuni 2024.08

Uyuni requires a file called form.yml, to describe how formula data should look within the Web UI.
The form.yml file is used by Uyuni to generate the desired formula with forms, with values editable by
a user.

The file contains a list of editable attributes that start with a $ sign. These attributes are used to determine
how to display the formula in the Uyuni Web UI.

For example, the form.yml that is included with the locale-formula is in:

/usr/share/susemanager/formulas/metadata/locale/form.yml

Part of that file looks like this:

timezone:
 $type: group

 name:
 $type: select
 $values: ["CET",
 "Etc/Zulu"
]
 $default: CET

 hardware_clock_set_to_utc:
 $type: boolean
 $default: True
...

All values that start with a $ sign are annotations used to display the UI that users interact with. These
annotations are not part of pillar data itself and are handled as metadata.

This section lists the available attributes:

$type

The most important attribute is the $type attribute. It defines the type of the pillar value and the
form-field that is generated. The supported types are:

• text

• password

• number

• url

• email

• date

• time

• datetime

1.11. Salt Formulas

52 / 130 1.11. Salt Formulas | Uyuni 2024.08

• boolean

• color

• select

• group

• edit-group

• namespace

• hidden-group (obsolete, renamed to namespace)

 The text attribute is the default and does not need to be specified explicitly.

Many of these values are self-explanatory:

• The text type generates a simple text field

• The password type generates a password field

• The color type generates a color picker

The group, edit-group, and namespace (formerly hidden-group) types do not generate an
editable field and are used to structure form and pillar data. All these types support nesting.

The group and namespace types differ slightly. The group type generates a visible border with a
heading. The namespace type shows nothing visually, and is only used to structure pillar data.

The edit-group type allows you to structure and restrict editable fields in a more flexible way. The
edit-group type is a collection of items of the same kind. Collections can have these four shapes:

• List of primitive items

• List of dictionaries

• Dictionary of primitive items

• Dictionary of dictionaries

The size of each collection is variable. Users can add or remove elements.

For example, edit-group supports the $minItems and $maxItems attributes, which simplifies
complex and repeatable input structures. These, and also itemName, are optional.

$default

Allows you to specify a default value to be displayed. This default value will be used if no other value
is entered. In an edit-group it allows you to create initial members of the group and populate them
with specified data.

1.11. Salt Formulas

53 / 130 1.11. Salt Formulas | Uyuni 2024.08

$optional

This type is a Boolean attribute. If it is true and the field is empty in the form, then this field will
not be generated in the formula data and the generated dictionary will not contain the field name key.
If it is false and the field is empty, the formula data will contain a <field name>: null entry.

$ifEmpty

This type is used if the field is empty. This usually occurs because the user did not provide a value.
The ifEmpty type can only be used when $optional is false or not defined. If $optional is
true, then $ifEmpty is ignored. In this example, the DP2 string would be used if the user leaves the
field empty:

displayName:
 $type: string
 $ifEmpty: DP2

$name

Allows you to specify the name of a value that is shown in the form. If this value is not set, the pillar
name is used and capitalized without underscores and dashes. Reference it in the same section with
${name}.

$help and $placeholder

These attributes are used to give a user a better understanding of what the value should be. The
$help type defines the message a user sees when hovering over a field The $placeholder type
displays a gray placeholder text in the field

Use $placeholder only with text fields like text, password, email or date fields. Do not add a
placeholder if you also use $default, as it will hide the placeholder.

$key

Applicable only if the edit-group has the shape of a dictionary. When the pillar data is a
dictionary, the $key attribute determines the key of an entry in the dictionary.

For example:

user_passwords:
 $type: edit-group
 $minItems: 1
 $prototype:
 $key:
 $type: text
 $type: text
 $default:
 alice: secret-password
 bob: you-shall-not-pass

Pillar:

1.11. Salt Formulas

54 / 130 1.11. Salt Formulas | Uyuni 2024.08

user_passwords:
 alice:
 secret-password
 bob:
 you-shall-not-pass

$minItems and $maxItems

In an edit-group, $minItems and $maxItems specifies the lowest and highest numbers for the
group.

$itemName

In an edit-group, $itemName defines a template for the name to be used for the members of the
group.

$prototype

In an edit-group, $prototype is mandatory and defines the default pre-filled values for newly
added members in the group.

$scope

Specifies a hierarchy level at which a value may be edited. Possible values are system, group, and
readonly.

The default value is $scope: system, allows values to be edited at group and system levels. A
value can be entered for each system but if no value is entered the system will fall back to the group
default.

The $scope: group option makes a value editable only for a group. On the system level you will
be able to see the value, but not edit it.

The $scope: readonly option makes a field read-only. It can be used to show data to the user, but
will not allow them to edit it. This option should be used in combination with the $default
attribute.

$visibleIf

 Deprecated in favor of $visible.

Allows you to show a field or group if a simple condition is met. An example condition is:

some_group#another_group#my_checkbox == true

The left part of the condition is the path to another value, and groups are separated by # signs. The
middle section of the condition should be either == for a value to be equal or != for values that
should be not equal. The last field in the statement can be any value which a field should have or not
have.

1.11. Salt Formulas

55 / 130 1.11. Salt Formulas | Uyuni 2024.08

The field with this attribute associated with it will be shown only when the condition is met. In this
example the field will be shown only if my_checkbox is checked. The ability to use conditional
statements is not limited to check boxes. It may also be used to check values of select-fields, text-
fields, and similar.

A check box should be structured like this:

some_group:
 $type: group

 another_group:
 $type: group

 my_checkbox:
 $type: boolean

Relative paths can be specified using prefix dots. One dot indicates a sibling, two dots indicate a
parent, and so on. This is mostly useful for edit-group.

some_group:
 $type: group

 another_group:
 $type: group

 my_checkbox:
 $type: boolean

 my_text:
 $visibleIf: .my_checkbox == true

 yet_another_group:
 $type: group

 my_text2:
 $visibleIf: ..another_group#my_checkbox == true

If you use multiple groups with the attribute, you can allow a users to select an option and show a
completely different form, dependent upon the selected value.

Values from hidden fields can be merged into the pillar data and sent to the client. A formula must
check the condition again and use the appropriate data. For example:

show_option:
 $type: checkbox
some_text:
 $visibleIf: .show_option == true

{% if pillar.show_option %}
do_something:
 with: {{ pillar.some_text }}
{% endif %}

1.11. Salt Formulas

56 / 130 1.11. Salt Formulas | Uyuni 2024.08

$values

Can only be used together with $type Use to specify the different options in the select-field.
$values must be a list of possible values to select. For example:

select_something:
 $type: select
 $values: ["option1", "option2"]

Or:

select_something:
 $type: select
 $values:
 - option1
 - option2

$visible

Allows you to show a field or group if a condition is met. You must use the jexl expression language
to write the condition.

Example structure:

some_group:
 $type: group

 another_group:
 $type: group

 my_checkbox:
 $type: boolean

An example condition is:

formValues.some_group.another_group.my_checkbox == true

The field with this attribute will only show if the condition is met. In this example, the field will show
only if my_checkbox is checked. You can also choose other elements for the conditional statement,
such as select fields or text fields.

If you use multiple groups with the attribute, users can select an option that will show a completely
different form, depending on the selected value.

Values from hidden fields can be merged into the pillar data and sent to the client. A formula must
check the condition again and use the appropriate data. For example:

show_option:
 $type: checkbox
some_text:

1.11. Salt Formulas

57 / 130 1.11. Salt Formulas | Uyuni 2024.08

https://github.com/TomFrost/jexl

 $visible: this.parent.value.show_option == true

{% if pillar.show_option %}
do_something:
 with: {{ pillar.some_text }}
{% endif %}

$disabled

Allows you to disable a field or group if a condition is met. You must use the jexl expression language
to write the condition.

If specified at group level it will disable all fields in that group.

$required

Fields with this attribute are mandatory. Supports using the jexl expresion language.

$match

Allows using a regular expression to validate the content of a text field.

It supports the regular expression features existing in JavaScript.

Example:

 hardware:
 $type: text
 $name: Hardware Type and Address
 $placeholder: Enter hardware-type hardware-address (for example, "ethernet
AA:BB:CC:DD:EE:FF")
 $help: Hardware Identifier - prefix is mandatory
 $match: "\\w+ [A-Z]{2}:[A-Z]{2}:[A-Z]{2}:[A-Z]{2}:[A-Z]{2}:[A-Z]{2}"

1.11.14.2.1. Expression language

You must use the jexl expression language to write conditions.

Given a structure like this:

some_group:
 $type: group

 another_group:
 $type: group

 my_checkbox:
 $type: boolean

An example condition is:

1.11. Salt Formulas

58 / 130 1.11. Salt Formulas | Uyuni 2024.08

https://github.com/TomFrost/jexl
https://github.com/TomFrost/jexl
https://github.com/TomFrost/jexl

formValues.some_group.another_group.my_checkbox == true

Absolute paths must begin with formValues.

Specify relative paths using this.parent.value to define the value of the parent.

You can also refer to the parent of the parent, with this.parent.parent.value. This is mostly
useful for edit-group elements.

Example for relative paths:

some_group:
 $type: group

 another_group:
 $type: group

 my_checkbox:
 $type: boolean

 my_text:
 $visible: this.parent.value.my_checkbox

 yet_another_group:
 $type: group

 my_text2:
 $visible: this.parent.parent.value.another_group.my_checkbox

Listing 6. Example: Basic edit-group

partitions:
 $name: "Hard Disk Partitions"
 $type: "edit-group"
 $minItems: 1
 $maxItems: 4
 $itemName: "Partition ${name}"
 $prototype:
 name:
 $default: "New partition"
 mountpoint:
 $default: "/var"
 size:
 $type: "number"
 $name: "Size in GB"
 $default:
 - name: "Boot"
 mountpoint: "/boot"
 - name: "Root"
 mountpoint: "/"
 size: 5000

Click Add to fill the form with the default values.

The formula is called hd-partitions and will appear as Hd Partitions in the Web UI.

1.11. Salt Formulas

59 / 130 1.11. Salt Formulas | Uyuni 2024.08

To remove the definition of a partition click the minus symbol in the title line of an inner group.

When you are finished, click Save Formula .

Listing 7. Example: Nested edit-group

users:
 $name: "Users"
 $type: edit-group
 $minItems: 2
 $maxItems: 5
 $prototype:
 name:
 $default: "username"
 password:
 $type: password
 groups:
 $type: edit-group
 $minItems: 1
 $prototype:
 group_name:
 $type: text
 $default:
 - name: "root"
 groups:
 - group_name: "users"

1.11. Salt Formulas

60 / 130 1.11. Salt Formulas | Uyuni 2024.08

 - group_name: "admins"
 - name: "admin"
 groups:
 - group_name: "users"

1.11.14.3. Writing Salt Formulas

Salt formulas are pre-written Salt states. You can use Jinja to configure formulas with pillar data.

Basic Jinja syntax is:

pillar.some.value

When you are sure a pillar exists, use this syntax:

salt['pillar.get']('some:value', 'default value')

You can also replace the pillar value with grains. For example, grains.some.value.

Using data this way makes the formula configurable. In this example, a specified package is installed in
the package_name pillar:

install_a_package:
 pkg.installed:
 - name: {{ pillar.package_name }}

You can also use more complex constructs such as if/else and for-loops to provide greater
functionality:

{% if pillar.installSomething %}
something:
 pkg.installed
{% else %}
anotherPackage:
 pkg.installed
{% endif %}

Another example:

{% for service in pillar.services %}
start_{{ service }}:
 service.running:
 - name: {{ service }}
{% endfor %}

Jinja also provides other helpful functions. For example, you can iterate over a dictionary:

1.11. Salt Formulas

61 / 130 1.11. Salt Formulas | Uyuni 2024.08

{% for key, value in some_dictionary.items() %}
do_something_with_{{ key }}: {{ value }}
{% endfor %}

You can have Salt manage your files (for example, configuration files for a program), and change them
with pillar data.

In this example, Salt copies the file salt-file_roots/my_state/files/my_program.conf on
the server to /etc/my_program/my_program.conf on the client and template it with Jinja:

/etc/my_program/my_program.conf:
 file.managed:
 - source: salt://my_state/files/my_program.conf
 - template: jinja

This example allows you to use Jinja in the file, like the previous example for states:

some_config_option = {{ pillar.config_option_a }}

1.11.14.4. Separate Data

Separating data from a state can increase flexibility and make it easier to re-use. You can do this by
writing values into a separate file named map.jinja. This file must be within the same directory as the
state files.

This example sets data to a dictionary with different values, depending on which system the state runs
on. It will also merge data with the pillar using the some.pillar.data value so you can access
some.pillar.data.value by using data.value.

You can choose to override defined values from pillars. For example, by overriding
some.pillar.data.package in this example:

{% set data = salt['grains.filter_by']({
 'Suse': {
 'package': 'packageA',
 'service': 'serviceA'
 },
 'RedHat': {
 'package': 'package_a',
 'service': 'service_a'
 }
}, merge=salt['pillar.get']('some:pillar:data')) %}

When you have created a map file, you can maintain compatibility with multiple system types while
accessing deep pillar data in a simpler way.

Now you can import and use data in any file. For example:

1.11. Salt Formulas

62 / 130 1.11. Salt Formulas | Uyuni 2024.08

{% from "some_folder/map.jinja" import data with context %}

install_package_a:
 pkg.installed:
 - name: {{ data.package }}

You can define multiple variables by copying the {% set …%} statement with different values and then
merge it with other pillars. For example:

{% set server = salt['grains.filter_by']({
 'Suse': {
 'package': 'my-server-pkg'
 }
}, merge=salt['pillar.get']('myFormula:server')) %}
{% set client = salt['grains.filter_by']({
 'Suse': {
 'package': 'my-client-pkg'
 }
}, merge=salt['pillar.get']('myFormula:client')) %}

To import multiple variables, separate them with a comma. For example:

{% from "map.jinja" import server, client with context %}

For more information about conventions to use when writing formulas, see https://docs.saltstack.com/en/
latest/topics/development/conventions/formulas.html.

1.11.14.5. Generated Pillar Data

Pillar data is generated by Uyuni when events occur like generating the highstate. You can use an external
pillar script to generate pillar data for packages and group IDs, and include all pillar data for a system:

/usr/share/susemanager/modules/pillar/suma_minion.py

The process is executed like this:

1. The suma_minion.py script starts and finds all formulas for a system by checking the
group_formulas.json and server_formulas.json files.

2. The script loads the values for each formula (groups and from the system) and merges them with the
highstate. By default, if no values are found, a group overrides a system if $scope: group.

3. The script also includes a list of formulas applied to the system in a pillar named formulas.

This structure makes it possible to include states. In this example, the top file is specifically generated by
the mgr_master_tops.py script. The top file includes a state called formulas for each system. This
includes the formulas.sls file located in /usr/share/susemanager/formulas/states or
/usr/share/salt-formulas/states/. The content looks similar to this:

1.11. Salt Formulas

63 / 130 1.11. Salt Formulas | Uyuni 2024.08

https://docs.saltstack.com/en/latest/topics/development/conventions/formulas.html
https://docs.saltstack.com/en/latest/topics/development/conventions/formulas.html

include: {{ pillar["formulas"] }}

This pillar includes all formulas that are specified in the pillar data generated from the external pillar
script.

Formulas should be created directly after Uyuni is installed. If you encounter any problems with formulas
check these things first:

• The external pillar script (suma_minion.py) must include formula data.

• Data is saved to /srv/susemanager/formula_data and the pillar and group_pillar sub-
directories. These directories should be automatically generated by the server.

• Formulas must be included for every client listed in the top file. Currently this process is initiated by
the mgr_master_tops.py script which includes the formulas.sls file located in
/usr/share/susemanager/formulas/states/ or /usr/share/salt-
formulas/states/. This directory must be a salt file root. File roots are configured on the salt-
master (Uyuni) located at /etc/salt/master.d/susemanager.conf.

1.12. Salt SSH
Salt SSH allows Salt commands and states to be issued directly over SSH. SSH connections are created
on demand, when the server executes an action on a client.

For more information about Salt SSH, see https://docs.saltstack.com/en/latest/topics/ssh/.

1.12.1. SSH Connection Methods

In Uyuni there are two SSH connection methods, ssh-push and ssh-push-tunnel. In both methods
the server initiates an SSH connection to the client to execute a Salt call.

In the ssh-push method, the package manager works as normal, and the HTTP or HTTPS connection
is directly created.

In the ssh-push-tunnel method, the server creates an HTTP or HTTPS connection through an SSH
tunnel. The HTTP connection initiated by the package manager is redirected through the tunnel using
/etc/hosts aliasing. Use this method for in-place firewall environments that block HTTP or HTTPS
connections between server and client.

1.12.2. Salt SSH Integration

As with all Salt calls, Uyuni invokes salt-ssh via the salt-api.

Salt SSH relies on a roster to obtain details such as hostname, ports, and the SSH parameters of a client.
Uyuni keeps these details in the database and makes them available to Salt SSH by using the uyuni roster
module, or by generating a temporary roster file on bootstrapping new clients with the Web UI. The

1.12. Salt SSH

64 / 130 1.12. Salt SSH | Uyuni 2024.08

https://docs.saltstack.com/en/latest/topics/ssh/

location of the temporary roster file is supplied to Salt SSH using the roster-file option. For the
registered clients roster set to uyuni is used instead to get the roster from the database with uyuni
salt roster module.

It is not recommended to run salt-ssh as root user. This can cause
permission issues the next time Uyuni tries to use Salt SSH. Use mgr-salt-
ssh, which changes the effective user to salt and avoids file permission issues.
If you want to use mgr-salt-ssh with a user other than root, the user should
have the permission to change effective user to salt.

mgr-salt-ssh uses roster set to uyuni by default, if neither roster nor roster-file specified
in the command line. It helps to call Salt commands to the registered Salt SSH clients with no roster file
generation.

1.12.3. Authentication

Salt SSH supports both password and key authentication. Uyuni uses both methods:

Password authentication is used only when bootstrapping. During the bootstrap step the key of the server
is not authorized on the client and therefore a password must be used for a connection to be made. The
password is used transiently in a temporary roster file used for bootstrapping and the roster file is
removed on finishing processing the event. This password is not stored.

All other common Salt calls use key authentication. During the bootstrap step the SSH key of the server is
authorized on the client and added to the client /.ssh/authorized_keys file. Subsequent calls no
longer require a password.

1.12.4. User Account

The user for Salt SSH calls made by Uyuni is taken from the ssh_push_sudo_user setting. By default,
the user is root.

If bootstrapping with default settings fail, check whether the client allows root
login with ssh.

If the value of ssh_push_sudo_user is not root, then the --sudo options of salt-ssh are used. For
this user you must configure the NOPASSWD option in the sudoers file. At least, set the python binary
with the version number; for example:

<USER> ALL=(ALL) NOPASSWD:/usr/bin/python3.6

1.12.5. HTTP Redirection

The ssh-push-tunnel method requires traffic to be redirected through an SSH tunnel. This allows
traffic to bypass firewalls blocking a direct connection between the client and the server.

1.12. Salt SSH

65 / 130 1.12. Salt SSH | Uyuni 2024.08

This is achieved by using port 1233 in the repository URL:

https://suma-server:1233/repourl...

You can alias the suma-server hostname to localhost in /etc/hosts:

127.0.0.1 localhost suma-server

The server creates a reverse SSH tunnel that connects localhost:1233 on the client to suma-
server:443:

ssh ... -R 1233:suma-server:443

This means that the package manager will actually connect to localhost:1233, which is then
forwarded to suma-server:443 by the SSH tunnel.

The package manager can contact the server only if the tunnel is open, which occurs only when the server
executes an action on the client.

Manual package manager operations that require server connectivity are not possible in this case.

1.12.6. Call Sequence

Salt SSH calls run in this sequence:

1. Set roster parameter to uyuni for registered clients or prepare the Salt roster on bootstrapping for
the call

a. Create remote port forwarding option if the contact method is ssh-push-tunnel

b. Compute the ProxyCommand if the client is connected through a proxy

c. Create Roster content

2. Create a temporary roster file (only in case of bootstrapping new client)

3. Execute a synchronous salt-ssh call using the API

4. Remove the temporary roster file (only in case of bootstrapping new client)

The roster content contains:

• hostname

• user

• port

1.12. Salt SSH

66 / 130 1.12. Salt SSH | Uyuni 2024.08

• remote_port_forwards: The remote port forwarding SSH option

• ssh_options: Other ssh options:

◦ ProxyCommand: If the client connects through a proxy

• timeout: defaults to 180 seconds

• minion_opts:

◦ master: Set to the minion ID if the contact method is ssh-push-tunnel

• ssh_pre_flight: The path to the shell script executed on the client before running any Salt
command

• ssh_pre_flight_args: The list of arguments to call the pre flight script on the client

1.12.7. Bootstrap Sequence

This section describes the sequence of events when clients are registered to a Salt master. While
bootstrapping is a type of Salt SSH call, the sequence differs slightly from regular SSH calls.

Bootstrapping uses Salt SSH for communication between the master and the client. This happens for both
regular and SSH clients.

1. For a regular Salt client, generate and pre-authorize the Salt key of the client.

2. For an SSH client, if a proxy was selected, retrieve the SSH public key of the proxy using the
mgrutil.chain_ssh_cmd runner. The runner copies the public key of the proxy to the server
using SSH. If needed, it can chain multiple SSH commands to reach the proxy across multiple hops.

3. Generate pillar data for bootstrap. The pillar data is compiled and stored on the Salt master, and
retrieved by the client.

4. Generate the roster for bootstrapping into a temporary file on the client. You can use the roster by
passing it to the Salt API, with this command:

mgr-salt-ssh --roster-file=<temporary_bootstrap_roster> minion state.apply
certs,<bootstrap_state>`

For bootstrap_state, use bootstrap for regular clients or ssh_bootstrap for SSH clients.

The way the client retrieves the pillar data depends on the contact method you have chosen for your
client:

• If you are using the ssh-push-tunnel contact method, ensure you have completed the remote
port forwarding option.

• If the client connects through a proxy, ensure you have completed the ProxyCommand option. This
depends on your proxy configuration, including how many proxies you need to connect through.

Pillar data contains:

1.12. Salt SSH

67 / 130 1.12. Salt SSH | Uyuni 2024.08

• mgr_server: The hostname of the Salt master

• mgr_origin_server: The hostname of the Uyuni Server

• minion_id: The hostname of the client to bootstrap

• contact_method: The connection type

• mgr_sudo_user: The user for salt-ssh

• activation_key: If selected

• minion_pub: The pre-authorized public client key

• minion_pem: The pre-authorized private client key

• proxy_pub_key: The public SSH key that was retrieved from the proxy if the target is an SSH client
and a proxy was selected

The roster content contains:

• hostname

• user

• password

• port

• remote_port_forwards: the remote port forwarding SSH option

• ssh_options: other SSH options:

◦ ProxyCommand if the client connects through a proxy

• timeout: defaults to 180 seconds

• ssh_pre_flight: The path to the pre flight shell script (default:
/usr/share/susemanager/salt-ssh/preflight.sh)

• ssh_pre_flight_args: The list of arguments to call the pre flight script on the client

This image provides an overview of the Salt SSH bootstrap process.

1.12. Salt SSH

68 / 130 1.12. Salt SSH | Uyuni 2024.08

Figure 1. Salt SSH Bootstrap Process

1.12.8. Proxy Support

Salt SSH works with Uyuni Proxy by chaining the SSH connection from one server or proxy to the next.
This is also known as a multi-hop or multi-gateway SSH connection.

Uyuni uses ProxyCommand to redirect SSH connections through proxies. This options invokes an
arbitrary command that is expected to connect to the SSH port on the target host. The SSH process uses
standard input and output of the command to communicate with the remote SSH daemon.

ProxyCommand replaces a TCP/IP connection. It does not perform any authorization or encryption. Its
role is simply to create a byte stream to the remote SSH daemon port.

This image depicts a client connecting to a server that is behind a gateway. In this example netcat is
used to pipe port 22 of the target host into the SSH standard input/output:

1.12. Salt SSH

69 / 130 1.12. Salt SSH | Uyuni 2024.08

The Salt SSH calls run in this sequence when a proxy is in use:

1. Uyuni initiates the SSH connection.

2. ProxyCommand uses SSH to create a connection from the server to the client through the proxies.

This example uses ProxyCommand with two proxies and the ssh-push method:

Connect the server to the first proxy:
/usr/bin/ssh -i /srv/susemanager/salt/salt_ssh/mgr_ssh_id -o StrictHostKeyChecking=no -o
User=mgrsshtunnel proxy1

Connect the first proxy to the second, and forward standard input/output on the client to
client:22 using the `-W` option:
/usr/bin/ssh -i /var/lib/spacewalk/mgrsshtunnel/.ssh/id_susemanager_ssh_push -o
StrictHostKeyChecking=no -o User=mgrsshtunnel -W client:22 proxy2

1.12. Salt SSH

70 / 130 1.12. Salt SSH | Uyuni 2024.08

This example uses ProxyCommand with two proxies and the ssh-push-tunnel method:

Connect the server to the first proxy:
/usr/bin/ssh -i /srv/susemanager/salt/salt_ssh/mgr_ssh_id -o User=mgrsshtunnel proxy1

Connect the first proxy to the second:
/usr/bin/ssh -i /home/mgrsshtunnel/.ssh/id_susemanager_ssh_push -o User=mgrsshtunnel proxy2

Connect the second proxy to the client and open an reverse tunnel (-R 1233:proxy2:443) from
the client to the HTTPS port on the second proxy:
/usr/bin/ssh -i /home/mgrsshtunnel/.ssh/id_susemanager_ssh_push -o User=root -R
1233:proxy2:443 client

Connect the client to itself and forward the standard input/output of the server to the SSH
port of the client (-W client:22).
This is equivalent to `ssh ... proxy2 netcat client 22`` and is needed because SSH does not
allow both the reverse tunnel (-R 1233:proxy2:443) and the standard input/output forward (-W
client:22) in the same command.
/usr/bin/ssh -i /root/.ssh/mgr_own_id -W client:22 -o User=root client

1.12. Salt SSH

71 / 130 1.12. Salt SSH | Uyuni 2024.08

1.12.9. Users and SSH Key Management

To connect to a proxy, the parent server or proxy uses a specific user called mgrsshtunnel. When
mgrsshtunnel connects, the SSH configuration of the proxy will force the execution of
/usr/sbin/mgr-proxy-ssh-force-cmd. This is a simple shell script that allows only the execution
of scp, ssh, or cat commands.

The connection to the proxy or client is authorized using SSH keys in this sequence:

1. The server connects to the client and to the first proxy using the key in
`/srv/susemanager/salt/salt_ssh/mgr_ssh_id.

2. Each proxy has its own key pair in
`/home/mgrsshtunnel/.ssh/id_susemanager_ssh_push.

3. Each proxy authorizes the key of the parent proxy or server.

4. The client authorizes its own key.

1.12. Salt SSH

72 / 130 1.12. Salt SSH | Uyuni 2024.08

1.12.10. Repository Access with a Proxy

When Uyuni connects to a repository using a proxy, it can use either ssh-push or ssh-push-tunnel.

In both methods the client connects to the proxy to retrieve package and repository information.

In the ssh-push method, the package manager connects directly to the proxy using HTTP or HTTPS.
This works in cases where there is no firewall between the client and the proxy that blocks HTTP
connections initiated by the client.

In the ssh-push-tunnel method, the HTTP connection to the proxy is redirected through a reverse
SSH tunnel.

1.12. Salt SSH

73 / 130 1.12. Salt SSH | Uyuni 2024.08

1.12.11. Proxy Setup

When the spacewalk-proxy package is installed on the proxy, the mgrsshtunnel user is created.

The initial configuration with configure-proxy.sh occurs using this sequence:

1. An SSH key pair is generated, or an existing keypair is imported.

2. The SSH key of the parent server or proxy is retrieved to authorize it on the proxy.

3. The ssh daemon on the proxy is configured to restrict the mgrsshtunnel user. This is done by the
mgr-proxy-ssh-push-init script, which is called from configure-proxy.sh. It does not
have to be manually invoked.

The parent key is retrieved by calling an HTTPS endpoint on the parent server or proxy. The first
endpoint tried is https://$PARENT/pub/id_susemanager_ssh_push.pub. If the parent is a
proxy then this will return the public SSH key of the proxy.

If a 404 error is received from that endpoint, then the parent is assumed to be a server not a proxy, and
https://$PARENT/rhn/manager/download/saltssh/pubkey is tried instead.

If an SSH key exists at /srv/susemanager/salt/salt_ssh/mgr_ssh_id.pub on the server it is
returned.

If the public key does not exist because salt-ssh has not been invoked yet, a key will be generates by
calling the mgrutil.ssh_keygen runner.

Salt SSH generates a keypair the first time it is invoked with
/srv/susemanager/salt/salt_ssh/mgr_ssh_id. The sequence in this
section is needed if a proxy is configured before Salt SSH was invoked for the
first time.

1.12.12. Rotate SSH keys

1.12. Salt SSH

74 / 130 1.12. Salt SSH | Uyuni 2024.08

https://$PARENT/pub/id_susemanager_ssh_push.pub
https://$PARENT/pub/id_susemanager_ssh_push.pub
https://$PARENT/pub/id_susemanager_ssh_push.pub
https://$PARENT/pub/id_susemanager_ssh_push.pub
https://$PARENT/pub/id_susemanager_ssh_push.pub
https://$PARENT/rhn/manager/download/saltssh/pubkey
https://$PARENT/rhn/manager/download/saltssh/pubkey
https://$PARENT/rhn/manager/download/saltssh/pubkey
https://$PARENT/rhn/manager/download/saltssh/pubkey
https://$PARENT/rhn/manager/download/saltssh/pubkey
https://$PARENT/rhn/manager/download/saltssh/pubkey
https://$PARENT/rhn/manager/download/saltssh/pubkey
https://$PARENT/rhn/manager/download/saltssh/pubkey
https://$PARENT/rhn/manager/download/saltssh/pubkey
https://$PARENT/rhn/manager/download/saltssh/pubkey
https://$PARENT/rhn/manager/download/saltssh/pubkey

The SSH key is used on salt-ssh managed systems. Additionally, it is used on Uyuni Proxies for the
user mgrsshtunnel. Normal systems managed with the Salt default method are not affected and do
not have this key configured.

Procedure: Rotating SSH keys

1. On the Uyuni Server, as user root, change to user salt:

su -s /bin/bash - salt

2. Create a new SSH key:

ssh-keygen -N "" -t rsa -q -f /var/lib/salt/.ssh/new_mgr_ssh_id

3. Copy the public key into the Salt filesystem to make it usable in a Salt state:

cp /var/lib/salt/.ssh/new_mgr_ssh_id.pub /srv/susemanager/salt/salt_ssh/

4. Change back to user root again:

exit

5. Rollout the new key to all systems that need it. Applying the util.mgr_rotate_saltssh_key
state will limit the changes to salt-ssh managed systems and proxies:

salt '*' state.apply util.mgr_rotate_saltssh_key
mgr-salt-ssh '*' state.apply util.mgr_rotate_saltssh_key

6. Move the old key away and make the new key the standard key. Rename mgr_ssh_id key to
disabled_mgr_ssh_id and new_mgr_ssh_id key to mgr_ssh_id in the SSH keystore of the
user salt as well as in the Salt filesystem for the public keys:

su -s /bin/bash - salt
cd .ssh
mv mgr_ssh_id disabled_mgr_ssh_id
mv mgr_ssh_id.pub disabled_mgr_ssh_id.pub
mv new_mgr_ssh_id mgr_ssh_id
mv new_mgr_ssh_id.pub mgr_ssh_id.pub
cd /srv/susemanager/salt/salt_ssh/
mv mgr_ssh_id.pub disabled_mgr_ssh_id.pub
mv new_mgr_ssh_id.pub mgr_ssh_id.pub

7. OPTIONAL: When containerized proxies exist, re-create the configuration to get the new SSH key
into the proxy configuration. Restart the containers with the new configuration. It is also possible to
change the existing configuration on the podman host (ssh.yaml). Change the value of

1.12. Salt SSH

75 / 130 1.12. Salt SSH | Uyuni 2024.08

server_ssh_key_pub with the content of the current mgr_ssh_id.pub.

8. To remove the disabled keys from the authorized_keys` files of the [literal]salt-
ssh`` managed systems and the proxies, apply the state a second time:

salt '*' state.apply util.mgr_rotate_saltssh_key
mgr-salt-ssh '*' state.apply util.mgr_rotate_saltssh_key

1.13. Salt Rate Limiting
Salt is able to run commands in parallel on a large number of clients. This can potentially create large
amounts of load on your infrastructure. You can use these rate-limiting parameters to control the load in
your environment.

These parameters are all configured in the /etc/rhn/rhn.conf configuration file.

Salt commands that are executed from the command line are not subject to these
parameters.

1.13.1. Batching

There are two parameters that control how actions are sent to clients, one for the batch size, and one for
the delay.

When the Uyuni Server sends a batch of actions to the target clients, it will send it to the number of
clients determined in the batch size parameter. After the specified delay period, commands will be sent to
the next batch of clients. The number of clients in each subsequent batch is equal to the number of clients
that have completed in the previous batch.

Choosing a lower batch size will reduce system load and parallelism, but might reduce overall
performance for processing actions.

The batch size parameter sets the maximum number of clients that can execute a single action at the same
time. Adjust the java.salt_batch_size parameter. Defaults to 200.

Increasing the delay increases the chance that multiple clients will have completed before the next action
is issued (more clients are grouped together in subsequent batches), resulting in fewer overall commands,
and reducing load.

The batch delay parameter sets the amount of time, in seconds, to wait after a command from the
previous batch is processed before beginning to process the command on the next client. Adjust the
java.salt_batch_delay parameter. Defaults to 1.0 seconds.

1.13.2. Disabling the Salt Mine

In older versions, Uyuni used a tool called Salt mine to check client availability. The Salt mine would
cause clients to contact the server every hour, which created significant load. With the introduction of a

1.13. Salt Rate Limiting

76 / 130 1.13. Salt Rate Limiting | Uyuni 2024.08

more efficient mechanism in Uyuni 3.2, the Salt mine is no longer required. Instead, the Uyuni Server
uses Taskomatic to ping only the clients that appear to have been offline for twelve hours or more, with all
clients being contacted at least once in every twenty four hour period by default. You can adjust this by
changing the web.system_checkin_threshold parameter in rhn.conf. The value is expressed in
days, and the default value is 1.

Newly registered Salt clients will have the Salt mine disabled by default. If the Salt mine is running on
your system, you can reduce load by disabling it. This is especially effective if you have a large number of
clients.

Disable the Salt mine by running this command on the server:

salt '*' state.sls util.mgr_mine_config_clean_up

This will restart the clients and generate some Salt events to be processed by the server. If you have a
large number of clients, handling these events could create excessive load. To avoid this, you can execute
the command in batch mode with this command:

salt --batch-size 50 '*' state.sls util.mgr_mine_config_clean_up

You will need to wait for this command to finish executing. Do not end the process with Ctrl  +  C .

1.14. Scaling Minions (Large Scale Deployments)
Uyuni is designed by default to work on small and medium scale installations. For installations with more
than 1000 clients per Uyuni Server, adequate hardware sizing and parameter tuning must be performed.

For more information on managing large scale deployments, see Specialized-guides › Large-
deployments.

1.15. Salt Connectivity
Depending on the size and spreadness of the environment where Uyuni is used some connectivity issues
are possible. There are no common recommendations for all the possible use cases as the environments
could be very different expecially if public clouds instances are involved.

1.15.1. Minions Connectivity

In case clients are losing the connection to the Uyuni Server (or Uyuni Proxy if involved), they are
unreachable from the Uyuni Server Web UI or with command line tools. To understand such a connection
issue check if the client is not reachable from the Uyuni Server with salt MINION_ID test.ping,
while venv-salt-call test.ping or (salt-call test.ping in case if non-bundle salt is used
on the client) is working fine on the client side. If this is the case, it is recommended to set
tcp_keepalive parameters.

1.14. Scaling Minions (Large Scale Deployments)

77 / 130 1.14. Scaling Minions (Large Scale Deployments) | Uyuni 2024.08

The parameters with the values from the example below could be used as a starting point to look for the
better combination, which could prevent cases of connection loss without restoring for some
environments. It is recommended to put the parameters in the separate drop-in configuration file like
/etc/venv-salt-minion/minion.d/tuning-keepalives.conf or
/etc/salt/minion.d/tuning-keepalives.conf, depending on the minion type used on the
client side.

Listing 8. Example: Keepalive parameters example values

Keepalive settings
##
ZeroMQ now includes support for configuring SO_KEEPALIVE if supported by
the OS. If connections between the minion and the master pass through
a state tracking device such as a firewall or VPN gateway, there is
the risk that it could tear down the connection the master and minion
without informing either party that their connection has been taken away.
Enabling TCP Keepalives prevents this from happening.

Overall state of TCP Keepalives, enable (1 or True), disable (0 or False)
or leave to the OS defaults (-1), on Linux, typically disabled. Default True, enabled.
tcp_keepalive: True

How long before the first keepalive should be sent in seconds. Default 300
to send the first keepalive after 5 minutes, OS default (-1) is typically 7200 seconds
on Linux see /proc/sys/net/ipv4/tcp_keepalive_time.
tcp_keepalive_idle: 10

How many lost probes are needed to consider the connection lost. Default -1
to use OS defaults, typically 9 on Linux, see /proc/sys/net/ipv4/tcp_keepalive_probes.
tcp_keepalive_cnt: 3

How often, in seconds, to send keepalives after the first one. Default -1 to
use OS defaults, typically 75 seconds on Linux, see
/proc/sys/net/ipv4/tcp_keepalive_intvl.
tcp_keepalive_intvl: 10

1.15.2. Proxies Connectivity

salt-broker service is used on Uyuni Proxies to forward salt traffic between the Uyuni Server and
salt-minion service used on the client side. It is possible that salt-broker and all the clients behind
it could be affected with the same issue as the clients directly connected to the Uyuni Server. The issue
could be fixed with the same parameters as recommended for the minions, but specified in
/etc/salt/broker on each Uyuni Proxy.

The other possible issue which Uyuni Proxy can be affected with is the case when the connectivity to the
Uyuni Server is lost for quite long interval, so the clients behind it started to retry the authentication to the
salt-master service on the Uyuni Server. This situation could be potentially dangerous as it could lead
to collecting large amount of ZeroMQ messages with authentication attemps in the interal buffer of
ZeroMQ sockets used inside the salt-broker service, so that on restoring the connection to the salt-
master all of the messages will be pushed to it. It could lead to the issues on Uyuni Server side with
salt-master service, as it could be impossible to serve all the cached requests in apropriate time or
even to the complete denial of the service.

To avoid such situation a set of extra parameters was introduced. The most important one is

1.15. Salt Connectivity

78 / 130 1.15. Salt Connectivity | Uyuni 2024.08

wait_for_backend, which should be set to True. This prevents opening the sockets for the clients
behind the proxy while the connectivity to the salt-master service is not established. In this case the
messages from the clients are not collected in the internal buffers. drop_after_retries is setting the
number of retries before closing the sockets to drop the cached messages. The other parameters could
help to fine tune the behaviour for the environment.

Setting timeouts, intervals and drop_after_retries to lower values are
making salt-broker service more aggressive on detecting the connection loss
to the salt-master, so that it puts the clients behind the proxy to the
conditions closer as they are connected directly to the Uyuni Server. On the
other hand increasing the values could provide some benefits in case if the
network channel between the Uyuni Proxy and Uyuni Server is not stable
enough, the message buffering can provide some flexibility while re-establishing
the connection.

Listing 9. Example: Keepalive parameters example values

ZeroMQ connection options
##
For more details about the following parameters check ZeroMQ documentation:
http://api.zeromq.org/4-2:zmq-setsockopt
All of these parameters will be set to the backend sockets
(from the salt-broker to the salt-master)

connect_timeout (sets ZMQ_CONNECT_TIMEOUT)
default: 0
value unit: milliseconds
Sets how long to wait before timing-out a connect to the remote socket.
0 could take much time, so it could be better to set to more strict value
for particular environment depending on the network conditions.
The value equal to 10000 is setting 10 seconds connect timeout.
connect_timeout: 3000

reconnect_ivl (sets ZMQ_RECONNECT_IVL)
default: 100
value unit: milliseconds
Sets the interval of time before reconnection attempt on connection drop.
reconnect_ivl: 1000

heartbeat_ivl (sets ZMQ_HEARTBEAT_IVL)
default: 0
value unit: milliseconds
This parameter is important for detection of loosing the connection.
In case of value equal to 0 it is not sending heartbits.
It's better to set to more relevant value for the particular environment,
depending on possible network issues.
The value equal to 20000 (20 seconds) works good for most cases.
heartbeat_ivl: 5000

heartbeat_timeout (sets ZMQ_HEARTBEAT_TIMEOUT)
default: 0
value unit: milliseconds
Sets the interval of time to consider that the connection is timed out
after sending the heartbeat and not getting the response on it.
The value equal to 60000 (1 minute) is considering the connection is down
after 1 minute of no response to the heartbeat.
heartbeat_timeout: 10000

Other connection options

1.15. Salt Connectivity

79 / 130 1.15. Salt Connectivity | Uyuni 2024.08

The following parameters are not related to ZeroMQ,
but the internal parameters of the salt-broker.
drop_after_retries
default: -1
value unit: number of retries
Drop the frontend sockets of the salt-broker in case if it reaches
the number of retries to reconnect to the backend socket.
-1 means not drop the frontend sockets
It's better to choose more relevant value for the particular environment.
10 can be a good choise for most of the cases.
drop_after_retries: 5

wait_for_backend
default: False
The main aim of this parameter is to prevent collecting the messages
with the open frontend socket and prevent pushing them on connecting
the backend socket to prevent large number of messages to be pushed
at once to salt-master.
It's better to set it to True if there is significant numer of minions
behind the salt-broker.
wait_for_backend: True

1.15. Salt Connectivity

80 / 130 1.15. Salt Connectivity | Uyuni 2024.08

Chapter 2. Large Deployments Guide Overview
Updated: 2024-08-23

Uyuni is designed by default to work on small and medium scale installations. For installations with more
than 1000 clients per Uyuni Server, adequate hardware sizing and parameter tuning must be performed.

There is no hard maximum number of supported systems. Many factors can affect how many clients can
reliably be used in a particular installation. Factors can include which features are used, and how the
hardware and systems are configured.

There are two main ways to manage large scale deployments. You can manage them with a single Uyuni
Server, or you can use multiple servers in a hub. Both methods are described in this book.

With large scale environments one should also consider the usage of Uyuni Proxies. Sizing and location of
the Proxies will dependent on the deployment topology. For more information see Installation-and-
upgrade › Install-proxy.

Additionally, if you are operating within a Retail environment, you can use Uyuni for Retail to manage
large deployments of point-of-service terminals. There is an introduction to Uyuni for Retail in this book.

Tuning and monitoring large scale deployments can differ from smaller installations. This book contains
guidance for both tuning and monitoring within larger installations.

2.1. Hardware Requirements
Not all problems can be solved with better hardware, but choosing the right hardware is an absolute
necessity for large scale deployments.

The minimum requirements for the Uyuni Server are:

• Eight or more recent x86-64 CPU cores.

• 32 GiB RAM. For installations with thousands of clients, use 64 GB or more.

• Fast I/O storage devices, such as locally attached SSDs. For PostgreSQL data directories, we
recommend locally attached RAID-0 SSDs.

If the Uyuni Server is virtualized, enable the elevator=none kernel command line option, for the best
input/output performance. You can check the current status with cat
/sys/block/<DEVICE>/queue/scheduler. This command will display a list of available schedulers
with the currently active one in brackets. To change the scheduler before a reboot, use echo none >
/sys/block/<DEVICE>/queue/scheduler.

The minimum requirements for the Uyuni Proxy are:

• One Uyuni Proxy per 500-1000 clients, depending on available network bandwidth.

2.1. Hardware Requirements

81 / 130 2.1. Hardware Requirements | Uyuni 2024.08

• Two or more recent x86-64 CPU cores.

• 16 GB RAM, and sufficient storage for caching.

Clients should never be directly attached to the Uyuni Server in production systems.

In large scale installations, the Uyuni Proxy is used primarily as a local cache for content between the
server and clients. Using proxies in this way can substantially reduce download time for clients, and
decrease Server egress bandwidth use.

The number of clients per proxy will affect the download time. Always take network structure and
available bandwidth into account.

We recommend you estimate the download time of typical usage to determine how many clients to
connnect to each proxy. To do this, you will need to estimate the number of package upgrades required in
every patch cycle. You can use this formula to calculate the download time:

Size of updates * Number of clients / Theoretical download speed / 60

For example, the total time needed to transfer 400 MB of upgrades through a physical link speed of
1 GB/s to 3000 clients:

400 MB * 3000 / 119 MB/s / 60 = 169 min

2.2. Using a Single Server to Manage Large Scale Deployments
This section discusses how to set up a single Uyuni Server to manage a large number of clients. It
contains some recommendations for hardware and networking, and an overview of the tuning parameters
that you need to consider in a large scale deployment.

2.2.1. Operation Recommendations

This section contains a range of recommendations for large scale deployments.

Always start small and scale up gradually. Monitor the server as you scale to
identify problems early.

2.2.1.1. Client Onboarding Rate

The rate at which Uyuni can onboard clients is limited and depends on hardware resources. Onboarding
clients at a faster rate than Uyuni is configured for will build up a backlog of unprocessed keys. This
slows down the process and can potentially exhaust resources. We recommend that you limit the
acceptance key rate programmatically. A safe starting point would be to onboard a client every 15
seconds. You can do that with this command:

2.2. Using a Single Server to Manage Large Scale Deployments

82 / 130 2.2. Using a Single Server to Manage Large Scale Deployments | Uyuni 2024.08

for k in $(salt-key -l un|grep -v Unaccepted); do salt-key -y -a $k; sleep 15; done

2.2.1.2. Clients and the RNG

All communication to and from clients is encrypted. During client onboarding, Salt uses asymmetric
cryptography, which requires available entropy from the Random Number Generator (RNG) facility in the
kernel. If sufficient entropy is not available from the RNG, it will significantly slow down
communications. This is especially true in virtualized environments. Ensure enough entropy is present, or
change the virtualization host options.

You can check the amount of available entropy with the cat
/proc/sys/kernel/random/entropy_avail. It should never be below 100-200.

2.2.1.3. Clients Running with Unaccepted Salt Keys

Idle clients which have not been onboarded, that is clients running with unaccepted Salt keys, consume
more resources than idle clients that have been onboarded. Generally, this consumes about an extra
2.5 Kb/s of inbound network bandwidth per client. For example, 1000 idle clients will consume about
2.5 Mb/s extra. This consumption will reduce almost to zero when onboarding has been completed for all
clients. Limit the number of non-onboarded clients for optimal performance.

2.2.1.4. Disabling the Salt Mine

In older versions, Uyuni used a tool called Salt Mine to check client availability. The Salt Mine would
cause clients to contact the server every hour, which created significant load. Since the introduction of a
more efficient mechanism in Uyuni 3.2, the Salt Mine is no longer required. Instead, the Uyuni Server
uses Taskomatic to ping only the clients that appear to have been offline for twelve hours or more, with all
clients being contacted at least once in every twenty four hour period by default. You can adjust this by
changing the web.system_checkin_threshold parameter in rhn.conf. The value is expressed in
days, and the default value is 1.

Newly registered clients will have the Salt Mine disabled by default. If the Salt Mine is running on your
system, you can reduce load by disabling it. This is especially effective if you have a large number of
clients.

Disable the Salt Mine by running this command on the server:

salt '*' state.sls util.mgr_mine_config_clean_up

This will restart the clients and generate some Salt events to be processed by the server. If you have a
large number of clients, handling these events could create excessive load. To avoid this, you can execute
the command in batch mode with this command:

salt --batch-size 50 '*' state.sls util.mgr_mine_config_clean_up

2.2. Using a Single Server to Manage Large Scale Deployments

83 / 130 2.2. Using a Single Server to Manage Large Scale Deployments | Uyuni 2024.08

You will need to wait for this command to finish executing. Do not end the process with Ctrl  +  C .

2.2.1.5. Disable Unnecessary Taskomatic Jobs

To minimize wasted resources, you can disable non-essential or unused Taskomatic jobs.

You can see the list of Taskomatic jobs in the Uyuni Web UI, at Admin › Task Schedules.

To disable a job, click the name of the job you want to disable, select Disable Schedule, and click
Update Schedule .

To delete a job, click the name of the job you want to delete, and click Delete Schedule .

We recommend disabling these jobs:

• Daily comparison of configuration files: compare-configs-default

• Hourly synchronization of Cobbler files: cobbler-sync-default

• Daily gatherer and subscription matcher: gatherer-matcher-default

Do not attempt to disable any other jobs, as it could prevent Uyuni from functioning correctly.

2.2.1.6. Swap and Monitoring

It is especially important in large scale deployments that you keep your Uyuni Server constantly
monitored and backed up.

Swap space use can have significant impacts on performance. If significant non-transient swap usage is
detected, you can increase the available hardware RAM.

You can also consider tuning the Server to consume less memory. For more information on tuning, see
Specialized-guides › Salt.

2.2.1.7. AES Key Rotation

Communications from the Salt Master to clients is encrypted with a single AES key. The key is rotated
when:

• The salt-master process is restarted, or

• Any minion key is deleted (for example, when a client is deleted from Uyuni)

After the AES key has been rotated, all clients must re-authenticate to the master. By default, this happens
next time a client receives a message. If you have a large number of clients (several thousands), this can
cause a high CPU load on the Uyuni Server. If the CPU load is excessive, we recommend that you delete
keys in batches, and in off-peak hours if possible, to avoid overloading the server.

For more information, see:

2.2. Using a Single Server to Manage Large Scale Deployments

84 / 130 2.2. Using a Single Server to Manage Large Scale Deployments | Uyuni 2024.08

• https://docs.saltstack.com/en/latest/topics/tutorials/intro_scale.html#too-many-minions-re-authing

• https://docs.saltstack.com/en/getstarted/system/communication.html

2.3. Multiple Servers with Hub to Manage Large Scale Deployments
If you need to manage a large number of clients, in most cases you can do so with a single Uyuni Server,
tuned appropriately. However, if you need to manage tens of thousands of clients, you might find it easier
to use multiple Uyuni Servers, in a hub, to manage them.

Uyuni Hub helps you manage very large deployments. The typical Hub topology looks like this:

Hub

Server1 Server2 Server .. Server ...

Proxy1 Proxy2

Client_1001 Client_1002 Client_1999 Client_2001 Client_2002 Client_2999

To copy contents between servers, you can use Inter-Server Synchronization (ISS). ISS allows you to
export data from one server (source) and import it on another (target) server. For more information, see
Administration › Iss_intro.

2.3.1. Hub Requirements

To set up a Hub installation, you require:

• One central Uyuni Server, which acts as the Hub Server.

• One or more additional Uyuni Servers, registered to the Hub. This document refers to these
additional servers as peripheral servers.

• Any number of clients registered to the peripheral servers.

• Ensure the Hub Server and all peripheral servers are running Uyuni 5.0 or higher.

2.3.1.1. Hub Server

Deploy the central Uyuni Server, which acts as the Hub Server, with mgradm. For more information
about deploying with mgradm, see Installation-and-upgrade › Container-deployment.

The Hub Server must not have clients registered to it. Clients should only be
registered to the peripheral servers.

2.3.1.2. Peripheral Servers

Deploy the peripheral servers with mgradm. For more information about deploying with mgradm, see

2.3. Multiple Servers with Hub to Manage Large Scale Deployments

85 / 130 2.3. Multiple Servers with Hub to Manage Large Scale Deployments | Uyuni 2024.08

https://docs.saltstack.com/en/latest/topics/tutorials/intro_scale.html#too-many-minions-re-authing
https://docs.saltstack.com/en/getstarted/system/communication.html

Installation-and-upgrade › Container-deployment.

Peripheral servers must be registered to the Hub Server as foreign clients. Standard registration methods
cannot be used. Use mgradm on the peripheral server host:

mgradm hub register --api-server <HUB_FQDN> --api-user <HUB_ADMIN> --api-password
<HUB_ADMIN_PASSWORD>

The peripheral servers must be registered to the Hub Server directly, do not use a proxy.

Optionally, it is possible to register the podman container host as a standard client (Salt minion) and
manage it from Uyuni Server.

You need credentials to access the XMLRPC APIs on each server, including the Hub Server.

2.3.2. Hub XMLRPC API Deployment

Before you begin, you need to install the hub-xmlrpc-api package, and configure the Hub Server to
use the API.

Procedure: Installing and Configuring the Hub XMLRPC API

1. On the Hub Server, or on a host that has access to all peripheral servers' XMLRPC APIs, install the
hub-xmlrpc-api package. The package is available in the Uyuni 2024.08 repositories.

2. OPTIONAL: Set the Hub XMLRPC API service to start automatically at boot time, and start it
immediately:

sudo systemctl enable hub-xmlrpc-api.service
sudo systemctl start hub-xmlrpc-api.service

3. OPTIONAL: Check that these parameters in the /etc/hub/hub.conf configuration file are
correct:

◦ HUB_API_URL: URL to the Hub Server XMLRPC API endpoint. Use the default value if you
are installing hub-xmlrpc-api on the Hub Server.

◦ HUB_CONNECT_TIMEOUT: the maximum number of seconds to wait for a response when
connecting to a Server. Use the default value in most cases.

◦ HUB_REQUEST_TIMEOUT: the maximum number of seconds to wait for a response when
calling a Server method. Use the default value in most cases.

◦ HUB_CONNECT_USING_SSL: use HTTPS instead of HTTP for communicating with peripheral
Servers. Recommended for a secure environment.

4. Restart services to pick up configuration changes.

To use HTTPS to connect to peripheral Servers, you must set the

2.3. Multiple Servers with Hub to Manage Large Scale Deployments

86 / 130 2.3. Multiple Servers with Hub to Manage Large Scale Deployments | Uyuni 2024.08

HUB_CONNECT_USING_SSL parameter to true, and ensure that the SSL
certificates for all the peripheral Servers are installed on the machine where the
hub-xmlrpc-api service runs. Do this by copying the RHN-ORG-TRUSTED-
SSL-CERT certificate file from each peripheral Server’s http://<server-
url>/pub/ directory to /etc/pki/trust/anchors/, and run update-
ca-certificates.

2.3.3. Using the Hub XMLRPC API

Make sure the hub-xmlrpc-api service is started:

systemctl start hub-xmlrpc-api

Once it is running, connect to the service at port 2830 using any XMLRPC-compliant client libraries.

For examples, see Specialized-guides › Large-deployments.

Logs are saved in /var/log/hub/hub-xmlrpc-api.log. Logs are rotated weekly, or when the log
file size reaches the specified limit. By default, the log file size limit is 10 MB.

2.3.4. Hub XMLRPC API Namespaces

The Hub XMLRPC API operates in a similar way to the Uyuni API. For Uyuni API documentation, see
https://documentation.suse.com/suma.

The Hub XMLRPC API exposes the same methods that are available from the server’s XMLRPC API,
with a few differences in parameter and return types. Additionally, the Hub XMLRPC API supports some
Hub-specific end points which are not available in the Uyuni API.

The Hub XMLRPC API supports three different namespaces:

• The hub namespace is used to target the Hub XMLRPC API Server. It supports Hub-specific
XMLRPC endpoints which are primarily related to authentication.

• The unicast namespace is used to target a single server registered in the hub. It redirects any call
transparently to one specific server and returns any value as if the server’s XMLRPC API endpoint
was used directly.

• The multicast namespace is used to target multiple peripheral servers registered in the hub. It
redirects any call transparently to all the specified servers and returns the results in the form of a
map.

• If you do not specify a namespace, all calls are transparently redirected to the underlying Uyuni
Server XMLRPC API of the Hub Server. This allows you to call all available methods on the Uyuni
Server XMLRPC API.

Methods called without specifying any of the above namespaces will be forwarded to the normal

2.3. Multiple Servers with Hub to Manage Large Scale Deployments

87 / 130 2.3. Multiple Servers with Hub to Manage Large Scale Deployments | Uyuni 2024.08

http://<server-url>/pub/
http://<server-url>/pub/
http://<server-url>/pub/
http://<server-url>/pub/
https://documentation.suse.com/suma

XMLRPC API of the hub. This is the API exposed on ports 80 and 443.

Some important considerations for hub namespaces:

• Individual server IDs can be obtained using client.hub.listServerIds(hubSessionKey).

• The unicast namespace assumes all methods receive hubSessionKey and serverID as their first
two parameters, then any other parameter as specified by the regular Server API.

client.unicast.[namespace].[methodName](hubSessionKey, serverId, param1, param2)

• The hubSessionKey can be obtained using different authentication methods. For more
information, see Specialized-guides › Large-deployments.

• The multicast namespace assumes all methods receive hubSessionKey, a list of ServerID
values, then lists of per-server parameters as specified by the regular server XMLRPC API. The
return value is a map, with Successful and Failed entries for each server involved in the call.

client.multicast.[namespace].[methodname](hubSessionKey, [serverId1, serverId2],
[param1_s1, param1_s2], [param2_s1, param2_s2])

2.3.5. Hub XMLRPC API Authentication Modes

The Hub XMLRPC API supports three different authentication modes:

• Manual mode (default): API credentials must be explicitly provided for each server.

• Relay mode: the credentials used to authenticate with the Hub are also used to authenticate to each
server. You must provide a list of servers to connect to.

• Auto-connect mode: credentials are reused for each server, and any peripheral server you have access
to is automatically connected.

2.3.5.1. Authentication Examples

This section provides examples of each authentication method.

Example: Manual Authentication

In manual mode, credentials have to be explicitly provided for each peripheral server before you can
connect to it.

A typical workflow for manual authentication is:

1. Credentials for the Hub are passed to the login method, and a session key for the Hub is returned
(hubSessionKey).

2. Using the session key from the previous step, Uyuni Server IDs are obtained for all the peripheral
servers attached to the Hub via the hub.listServerIds method.

2.3. Multiple Servers with Hub to Manage Large Scale Deployments

88 / 130 2.3. Multiple Servers with Hub to Manage Large Scale Deployments | Uyuni 2024.08

3. Credentials for each peripheral server are provided to the attachToServers method. This
performs authentication against each server’s XMLRPC API endpoint.

4. A multicast call is performed on a set of servers. This is defined by serverIds, which contains
the IDs of the servers to target. In the background, system.list_system is called on each
server’s XMLRPC API

5. Hub aggregates the results and returns the response in the form of a map. The map has two entries:

◦ Successful: list of responses for those peripheral servers where the call succeeded.

◦ Failed: list of responses for those peripheral servers where the call failed.

If you want to call a method on just one Uyuni Server, then Hub API also
provides a unicast namespace. In this case, the response will be a single value
and not a map, in the same way as if you called that Uyuni server’s API directly.

Listing 10. Example Python Script for Manual Authentication:

#!/usr/bin/python3
import xmlrpc.client

HUB_XMLRPC_API_URL = "<HUB_XMLRPC_API_URL>"
HUB_USERNAME = "<USERNAME>"
HUB_PASSWORD = "<PASSWORD>"

client = xmlrpc.client.ServerProxy(HUB_XMLRPC_API_URL, verbose=0)

hubSessionKey = client.hub.login(HUB_USERNAME, HUB_PASSWORD)

Get the server IDs
serverIds = client.hub.listServerIds(hubSessionKey)

For simplicity, this example assumes you are using the same username and password here, as
on the hub server.
However, in most cases, every server has its own individual credentials.
usernames = [HUB_USERNAME for s in serverIds]
passwords = [HUB_PASSWORD for s in serverIds]

Each server uses the credentials set above, client.hub.attachToServers needs
them passed as lists with as many elements as there are servers.
client.hub.attachToServers(hubSessionKey, serverIds, usernames, passwords)

Perform the operation
systemsPerServer = client.multicast.system.list_systems(hubSessionKey, serverIds)
successfulResponses = systemsPerServer["Successful"]["Responses"]
failedResponses = systemsPerServer["Failed"]["Responses"]

for system in successfulResponses:
 print(system)

Log out
client.hub.logout(hubSessionKey)

Example: Relay Authentication

In relay authentication mode, the credentials used to sign in to the Hub API are also used to sign in into
the APIs of the peripheral servers the user wants to work with. In this authentication mode, it is assumed
that the same credentials are valid for every server, and that they correspond to a user with appropriate
permissions.

2.3. Multiple Servers with Hub to Manage Large Scale Deployments

89 / 130 2.3. Multiple Servers with Hub to Manage Large Scale Deployments | Uyuni 2024.08

After signing in, you must call the attachToServers method. This method defines the servers to target
in all subsequent calls.

A typical workflow for relay authentication is:

1. Credentials for the Hub are passed to the loginWithAuthRelayMode method, and a session key
for the Hub is returned (hubSessionKey).

2. Using the session key from the previous step, Uyuni Server IDs are obtained for all the peripheral
servers attached to the Hub via the hub.listServerIds method

3. A call to attachToServers is made, and the same credentials used to sign in to the Hub are
passed to each server. This performs authentication against each server’s XMLRPC API endpoint.

4. A multicast call is performed on a set of servers. This is defined by serverIds, which contains
the IDs of the servers to target. In the background, system.list_system is called on each
server’s XMLRPC API.

5. Hub aggregates the results and returns the response in the form of a map. The map has two entries:

◦ Successful: list of responses for those peripheral servers where the call succeeded.

◦ Failed: list of responses for those peripheral servers the call failed.

Listing 11. Example Python Script for Relay Authentication:

#!/usr/bin/python3
import xmlrpc.client

HUB_XMLRPC_API_URL = "<HUB_XMLRPC_API_URL>"
HUB_USERNAME = "<USERNAME>"
HUB_PASSWORD = "<PASSWORD>"

client = xmlrpc.client.ServerProxy(HUB_XMLRPC_API_URL, verbose=0)

hubSessionKey = client.hub.loginWithAuthRelayMode(HUB_USERNAME, HUB_PASSWORD)

Get the server IDs
serverIds = client.hub.listServerIds(hubSessionKey)

Authenticate those servers(same credentials will be used as of hub to authenticate)
client.hub.attachToServers(hubSessionKey, serverIds)

Perform the needed operation
systemsPerServer = client.multicast.system.list_systems(hubSessionKey, serverIds)
successfulResponses = systemsPerServer["Successful"]["Responses"]
failedResponses = systemsPerServer["Failed"]["Responses"]

for system in successfulResponses:
 print(system)

Log out
client.hub.logout(hubSessionKey)

Example: Auto-Connect Authentication

Auto-connect mode is similar to relay mode, it uses the Hub credentials to sign in in to all peripheral
servers. However, there is no need to use the attachToServers method, as auto-connect mode

2.3. Multiple Servers with Hub to Manage Large Scale Deployments

90 / 130 2.3. Multiple Servers with Hub to Manage Large Scale Deployments | Uyuni 2024.08

connects to all available peripheral servers. This occurs at the same time as you sign in to the Hub.

A typical workflow for auto-connect authentication is:

1. Credentials for the Hub are passed to the loginWithAutoconnectMode method, and a session
key for the Hub is returned (hubSessionKey).

2. A multicast call is performed on a set of servers. This is defined by serverIds, which contains
the IDs of the servers to target. In the background, system.list_system is called on each
server’s XMLRPC API.

3. Hub aggregates the results and returns the response in the form of a map. The map has two entries:

◦ Successful: list of responses for those peripheral servers where the call succeeded.

◦ Failed: list of responses for those peripheral servers where the call failed.

Listing 12. Example Python Script for Auto-Connect Authentication:

#!/usr/bin/python3
import xmlrpc.client

HUB_XMLRPC_API_URL = "<HUB_XMLRPC_API_URL>"
HUB_USERNAME = "<USERNAME>"
HUB_PASSWORD = "<PASSWORD>"

client = xmlrpc.client.ServerProxy(HUB_XMLRPC_API_URL, verbose=0)

loginResponse = client.hub.loginWithAutoconnectMode(HUB_USERNAME, HUB_PASSWORD)
hubSessionKey = loginResponse["SessionKey"]

Get the server IDs
serverIds = client.hub.listServerIds(hubSessionKey)

Perform the needed operation
systemsPerServer = client.multicast.system.list_systems(hubSessionKey, serverIds)
successfulResponses = systemsPerServer["Successful"]["Responses"]
failedResponses = systemsPerServer["Failed"]["Responses"]

for system in successfulResponses:
 print(system)

Log out
client.hub.logout(hubSessionKey)

2.3.6. Hub Reporting

The Hub prepares and provides content for multiple peripheral Uyuni Servers. The goal of the reporting
feature is to get data from these Servers back and have combined reporting data available on the Hub. The
data is made available for external Reporting Tools.

2.3.6.1. Architecture

The main database is a PostgreSQL database in the Uyuni Hub system. It stores all the information
collected from all the servers, and aggregates them. Every peripheral Server has its own reporting
database where the information is collected for that system. In summary:

2.3. Multiple Servers with Hub to Manage Large Scale Deployments

91 / 130 2.3. Multiple Servers with Hub to Manage Large Scale Deployments | Uyuni 2024.08

• the DB in Uyuni Hub stores, collects and aggregates data coming from all the DBs of the peripheral
Servers,

• the DB in Uyuni Hub stores also its own data from the systems directly connected and managed by
the Hub,

• the DB in peripheral Uyuni Server stores its own data,

• the reporting tool can be connected either to the Hub or to any Uyuni Server.

2.3.6.2. Setup

The reporting database and schema are set up by default using the local PostgreSQL server. The reporting
database is a separate database accessible via the network.

As a requirement we expect all server certificates are signed by the same Root
Certificate Authority (CA). The whole Uyuni Hub environment should be using
only one Root CA.

2.3.6.2.1. Create a DB user for the reporting

Before connecting an external Reporting Tools to the Database, a user with read-only permission should
be created. For doing that, it is possible to use uyuni-setup-reportdb-user.

usage: uyuni-setup-reportdb-user [options]

options:
 --help
 show this help message and exit
 --non-interactive
 Switches to non-interactive mode
 --dbuser=DBUSER
 Report DB User
 --dbpassword=DBPASSWORD
 Report DB Password
 --add
 Add the new user
 --delete
 Delete the user
 --modify
 Set a new password

2.3.6.3. Database Schema

The schema exports the most important tables from the main Uyuni Database as a de-normalized variant
containing only data which are relevant for a report.

Ready-to-use reports are provided as views, aggregating data over multiple tables.

Every table gets an extra id column (mgm_id) specifying the Uyuni server which provided the data. On a
single Uyuni Server this column has the standard value 1 which represent localhost. On the Uyuni
Hub it is replaced with the real server id the managed server has in the hub database.

2.3. Multiple Servers with Hub to Manage Large Scale Deployments

92 / 130 2.3. Multiple Servers with Hub to Manage Large Scale Deployments | Uyuni 2024.08

Another common additional field is synced_date, which represents the time when the data were
exported from the main Uyuni Server database.

Navigate to Help › Report Database Schema to find the schema documentation.

2.3.6.4. Data Generation and Update

Uyuni uses taskomatic jobs to generate the data for the reporting database and to get the data from the
peripheral servers to the hub.

To generate and update the data on a peripheral server, the responsible schedule is called update-
reporting-default. It is executed by default daily at midnight.

On the Uyuni Hub there is a second schedule which is important. To fetch the reporting data from all
registered peripheral servers, the task with the name update-reporting-hub-default is executed
daily at 1:30 AM.

All times are in the local timezone of the server. If the peripheral servers are in different timezones, it is
recommended to align all the schedules. Make sure that all reporting data are gathered at a specific point
in time, and update-reporting-hub-default is running when all peripheral servers have actually
finished their local jobs.

2.3.6.4.1. Tuning Reporting Jobs

2.3.6.4.2. report_db_batch_size

Description The maximum number of rows fetched and written
from one database to the other in one shot.

Tune when Out of memory errors or on processing speed
problems.

Value default 2000

Value recommendation 500 - 5000

Location /etc/rhn/rhn.conf

Example report_db_batch_size = 4000

After changing Check memory usage. Monitor memory usage
closely before and after the change.

2.3.6.4.3. report_db_hub_workers

Description The maximum number of workers requesting data
from peripheral servers on a hub at the same point
in time.

2.3. Multiple Servers with Hub to Manage Large Scale Deployments

93 / 130 2.3. Multiple Servers with Hub to Manage Large Scale Deployments | Uyuni 2024.08

Tune when The number of peripheral servers increases
significantly (more than 100), or a faster
synchronization is required.

Value default 2

Value recommendation 2 - 10

Location /etc/rhn/rhn.conf

Example report_db_hub_workers = 5

After changing Check memory usage. Monitor memory and cpu
usage of the hub closely before and after the
change. Also monitor the load, cpu and memory
usage of the reporting database of the hub.

Notes All the data collected from the peripheral server
must be written into the hub reporting database.
Tuning that database could increase the
performance as well.

2.4. Managing Large Scale Deployments in a Retail Environment
Uyuni for Retail 2024.08 is an open source infrastructure management solution, optimized and tailored
specifically for the retail industry. It uses the same technology as SUSE Manager, but is customized to
address the needs of retail organizations.

Uyuni for Retail is designed for use in retail situations where customers can use point-of-service terminals
to purchase or exchange goods, take part in promotions, or collect loyalty points. In addition to retail
installations, it can also be used for novel purposes, such as maintaining student computers in an
educational environment, or self-service kiosks in banks or hospitals.

Uyuni for Retail is intended for use in installations that include servers, workstations, point-of-service
terminals, and other devices. It allows administrators to install, configure, and update the software on their
servers, and manage the deployment and provisioning of point-of-service machines.

Point-of-Service (POS) terminals can come in many different formats, such as point-of-sale terminals,
kiosks, digital scales, self-service systems, and reverse-vending systems. Every terminal, however, is
provided by a vendor, who set basic information about the device in the firmware. Uyuni for Retail
accesses this vendor information to determine how best to work with the terminal in use.

In most cases, different terminals will require a different operating system (OS) image to ensure they work
correctly. For example, an information kiosk has a high-resolution touchscreen, where a cashier terminal
might only have a very basic display. While both of these terminals require similar processing and
network functionality, they will require different OS images. The OS images ensure that the different
display mechanisms work correctly.

2.4. Managing Large Scale Deployments in a Retail Environment

94 / 130 2.4. Managing Large Scale Deployments in a Retail Environment | Uyuni 2024.08

For more information about setting up and using Uyuni for Retail, see Retail › Retail-overview.

2.5. Tuning Large Scale Deployments
Uyuni is designed by default to work on small and medium scale installations. For installations with more
than 1000 clients per Uyuni Server, adequate hardware sizing and parameter tuning must be performed.

The instructions in this section can have severe and catastrophic performance
impacts when improperly used. In some cases, they can cause Uyuni to
completely cease functioning. Always test changes before implementing them in
a production environment. During implementation, take care when changing
parameters. Monitor performance before and after each change, and revert any
steps that do not produce the expected result.

Tuning is not required on installations of fewer than 1000 clients. Do not
perform these instructions on small or medium scale installations.

2.5.1. The Tuning Process

Any Uyuni installation is subject to a number of design and infrastructure constraints that, for the
purposes of tuning, we call environmental variables. Environmental variables can include the total number
of clients, the number of different operating systems under management, and the number of software
channels.

Environmental variables influence, either directly or indirectly, the value of most configuration
parameters. During the tuning process, the configuration parameters are manipulated to improve system
performance.

Before you begin tuning, you will need to estimate the best setting for each environment variable, and
adjust the configuration parameters to suit.

To help you with the estimation process, we have provided you with a dependency graph. Locate the
environmental variables on the dependency graph to determine how they will influence other variables
and parameters.

Environmental variables are represented by graph nodes in a rectangle at the top of the dependency graph.
Each node is connected to the relevant parameters that might need tuning. Consult the relevant sections in
this document for more information about recommended values.

Tuning one parameter might require tuning other parameters, or changing hardware, or the infrastructure.
When you change a parameter, follow the arrows from that node on the graph to determine what other
parameters might need adjustment. Continue through each parameter until you have visited all nodes on
the graph.

2.5. Tuning Large Scale Deployments

95 / 130 2.5. Tuning Large Scale Deployments | Uyuni 2024.08

Network
Bandwidth

Proxy count

Client count

java.message_queue_thread_pool_size java.salt_batch_size

java.salt_presence_ping_gather_job_timeout

java.salt_presence_ping_timeout

org.quartz.threadPool.threadCount

org.quartz.scheduler.idleWaitTime

rhn-search.java.maxmemory

worker_threads

pub_hwm zmq_backlog

MinionActionExecutor.parallel_threads

connectionTimeout keepAliveTimeout

Channel count

java.taskomatic_channel_repodata_workers

OS mix

taskomatic.java.maxmemory

User count

MaxClients

hibernate.c3p0.max_size thread_pool Tomcat -Xmx

memory usage

work_mem

maxThreadsServerLimit

max_connections

effective_cache_size

RAM

shared_buffersswappiness

Key to the Dependency Graph

• 3D boxes are hardware design variables or constraints

• Oval-shaped boxes are software or system design variables or constraints

• Rectangle-shaped boxes are configurable parameters, color-coded by configuration file:

◦ Red: Apache httpd configuration files

◦ Blue: Salt configuration files

◦ Brown: Tomcat configuration files

◦ Grey: PostgreSQL configuration files

◦ Purple: /etc/rhn/rhn.conf

• Dashed connecting lines indicate a variable or constraint that might require a change to another
parameter

• Solid connecting lines indicate that changing a configuration parameter requires checking another
one to prevent issues

After the initial tuning has been completed, you will need to consider tuning again in these cases:

• If your tuning inputs change significantly

• If special conditions arise that require a certain parameter to be changed. For example, if specific
warnings appear in a log file.

• If performance is not satisfactory

To re-tune your installation, you will need to use the dependency graph again. Start from the node where
significant change has happened.

2.5.2. Environmental Variables

2.5. Tuning Large Scale Deployments

96 / 130 2.5. Tuning Large Scale Deployments | Uyuni 2024.08

This section contains information about environmental variables (inputs to the tuning process).

Network Bandwidth

A measure of the typically available egress bandwith from the Uyuni Server host to the clients or
Uyuni Proxy hosts. This should take into account network hardware and topology as well as possible
capacity limits on switches, routers, and other network equipment between the server and clients.

Channel count

The number of expected channels to manage. Includes any vendor-provided, third-party, and cloned
or staged channels.

Client count

The total number of actual or expected clients. It is important to tune any parameters in advance of a
client count increase, whenever possible.

OS mix

The number of distinct operating system versions that managed clients have installed. This is ordered
by family (SUSE Linux Enterprise, openSUSE, Red Hat Enterprise Linux, or Ubuntu based). Storage
and computing requirements are different in each case.

User count

The expected maximum amount of concurrent users interacting with the Web UI plus the number of
programs simultaneously using the XMLRPC API. Includes spacecmd, spacewalk-clone-by-
date, and similar.

2.5.3. Parameters

This section contains information about the available parameters.

2.5.3.1. MaxClients

Description The maximum number of HTTP requests served
simultaneously by Apache httpd. Proxies, Web UI,
and XMLRPC API clients each consume one.
Requests exceeding the parameter will be queued
and might result in timeouts.

Tune when User count and proxy count increase significantly
and this line appears in
/var/log/apache2/error_log: […]
[mpm_prefork:error] [pid …]
AH00161: server reached
MaxRequestWorkers setting, consider
raising the MaxRequestWorkers
setting.

2.5. Tuning Large Scale Deployments

97 / 130 2.5. Tuning Large Scale Deployments | Uyuni 2024.08

Value default 150

Value recommendation 150-500

Location /etc/apache2/server-tuning.conf, in the
prefork.c section

Example MaxClients = 200

After changing Immediately change ServerLimit and check
maxThreads for possible adjustment.

Notes This parameter was renamed to
MaxRequestWorkers, both names are valid.

More information https://httpd.apache.org/docs/2.4/en/mod/
mpm_common.html#maxrequestworkers

2.5.3.2. ServerLimit

Description The number of Apache httpd processes serving
HTTP requests simultaneously. The number must
equal MaxClients.

Tune when MaxClients changes

Value default 150

Value recommendation The same value as MaxClients

Location /etc/apache2/server-tuning.conf, in the
prefork.c section

Example ServerLimit = 200

More information https://httpd.apache.org/docs/2.4/en/mod/
mpm_common.html#serverlimit

2.5.3.3. maxThreads

Description The number of Tomcat threads dedicated to serving
HTTP requests

Tune when MaxClients changes. maxThreads must always
be equal or greater than MaxClients

Value default 150

Value recommendation The same value as MaxClients

2.5. Tuning Large Scale Deployments

98 / 130 2.5. Tuning Large Scale Deployments | Uyuni 2024.08

https://httpd.apache.org/docs/2.4/en/mod/mpm_common.html#maxrequestworkers
https://httpd.apache.org/docs/2.4/en/mod/mpm_common.html#maxrequestworkers
https://httpd.apache.org/docs/2.4/en/mod/mpm_common.html#serverlimit
https://httpd.apache.org/docs/2.4/en/mod/mpm_common.html#serverlimit

Location /etc/tomcat/server.xml

Example <Connector port="8009"
protocol="AJP/1.3"
redirectPort="8443"
URIEncoding="UTF-8"
address="127.0.0.1" maxThreads="200"
connectionTimeout="20000"/>

More information https://tomcat.apache.org/tomcat-9.0-doc/config/
http.html

2.5.3.4. connectionTimeout

Description The number of milliseconds before a non-
responding AJP connection is forcibly closed.

Tune when Client count increases significantly and AH00992,
AH00877, and AH01030 errors appear in Apache
error logs during a load peak.

Value default 900000

Value recommendation 20000-3600000

Location /etc/tomcat/server.xml

Example <Connector port="8009"
protocol="AJP/1.3"
redirectPort="8443"
URIEncoding="UTF-8"
address="127.0.0.1" maxThreads="200"
connectionTimeout="1000000"
keepAliveTimeout="300000"/>

More information https://tomcat.apache.org/tomcat-9.0-doc/config/
http.html

2.5.3.5. keepAliveTimeout

Description The number of milliseconds without data exchange
from the JVM before a non-responding AJP
connection is forcibly closed.

2.5. Tuning Large Scale Deployments

99 / 130 2.5. Tuning Large Scale Deployments | Uyuni 2024.08

https://tomcat.apache.org/tomcat-9.0-doc/config/http.html
https://tomcat.apache.org/tomcat-9.0-doc/config/http.html
https://tomcat.apache.org/tomcat-9.0-doc/config/http.html
https://tomcat.apache.org/tomcat-9.0-doc/config/http.html

Tune when Client count increases significantly and AH00992,
AH00877, and AH01030 errors appear in Apache
error logs during a load peak.

Value default 300000

Value recommendation 20000-600000

Location /etc/tomcat/server.xml

Example <Connector port="8009"
protocol="AJP/1.3"
redirectPort="8443"
URIEncoding="UTF-8"
address="127.0.0.1" maxThreads="200"
connectionTimeout="1000000"
keepAliveTimeout="400000"/>

More information https://tomcat.apache.org/tomcat-9.0-doc/config/
http.html

2.5.3.6. Tomcat’s -Xmx

Description The maximum amount of memory Tomcat can use

Tune when java.message_queue_thread_pool_size is
increased or OutOfMemoryException errors
appear in /var/log/rhn/rhn_web_ui.log

Value default 1 GiB

Value recommendation 4-8 GiB

Location /etc/tomcat/conf.d/tomcat_java_opts.
conf

Example JAVA_OPTS="… -Xmx8G …"

After changing Check memory usage

More information https://docs.oracle.com/javase/8/docs/technotes/
tools/windows/java.html

2.5.3.7. java.disable_list_update_status

Description Disable displaying the update status for clients of a
system group

2.5. Tuning Large Scale Deployments

100 / 130 2.5. Tuning Large Scale Deployments | Uyuni 2024.08

https://tomcat.apache.org/tomcat-9.0-doc/config/http.html
https://tomcat.apache.org/tomcat-9.0-doc/config/http.html
https://docs.oracle.com/javase/8/docs/technotes/tools/windows/java.html
https://docs.oracle.com/javase/8/docs/technotes/tools/windows/java.html

Tune when displaying the update status causes timeouts

Value default false

Value recommendation

Location /etc/rhn/rhn.conf

Example java.disable_list_update_status =
true

After changing ?

Notes

More information man rhn.conf

2.5.3.8. java.message_queue_thread_pool_size

Description The maximum number of threads in Tomcat
dedicated to asynchronous operations

Tune when Client count increases significantly

Value default 5

Value recommendation 50 - 150

Location /etc/rhn/rhn.conf

Example java.message_queue_thread_pool_size
= 50

After changing Check hibernate.c3p0.max_size, as each
thread consumes a PostgreSQL connection,
starvation might happen if the allocated connection
pool is insufficient. Check thread_pool, as each
thread might perform Salt API calls, starvation
might happen if the allocated Salt thread pool is
insufficient. Check Tomcat’s -Xmx, as each thread
consumes memory, OutOfMemoryException
might be raised if insufficient.

Notes Incoming Salt events are handled in separate thread
pool, see
java.salt_event_thread_pool_size

More information man rhn.conf

2.5. Tuning Large Scale Deployments

101 / 130 2.5. Tuning Large Scale Deployments | Uyuni 2024.08

2.5.3.9. java.salt_batch_size

Description The maximum number of minions concurrently
executing a scheduled action.

Tune when Client count reaches several thousands and actions
are not executed quickly enough.

Value default 200

Value recommendation 200-500

Location /etc/rhn/rhn.conf

Example java.salt_batch_size = 300

After changing Check memory usage. Monitor memory usage
closely before and after the change.

More information Specialized-guides › Salt

2.5.3.10. java.salt_event_thread_pool_size

Description The maximum number of threads in Tomcat
dedicated to handling of incoming Salt events.

Tune when The number of queued Salt events grows. Typically,
this can happen during onboarding of large number
of minions with higher value of
java.salt_presence_ping_timeout. The
number of events can be queried by echo
"select count(*) from
susesaltevent;" | spacewalk-sql
--select-mode-direct -

Value default 8

Value recommendation 20-100

Location /etc/rhn/rhn.conf

Example java.salt_event_thread_pool_size =
50

2.5. Tuning Large Scale Deployments

102 / 130 2.5. Tuning Large Scale Deployments | Uyuni 2024.08

After changing Check the length of Salt event queue. Check
hibernate.c3p0.max_size, as each thread
consumes a PostgreSQL connection, starvation
might happen if the allocated connection pool is
insufficient. Check thread_pool, as each thread
might perform Salt API calls, starvation might
happen if the allocated Salt thread pool is
insufficient. Check Tomcat’s -Xmx, as each thread
consumes memory, OutOfMemoryException
might be raised if insufficient.

More information man rhn.conf

2.5.3.11. java.salt_presence_ping_timeout

Description Before any action is executed on a client, a
presence ping is executed to make sure the client is
reachable. This parameter sets the amount of time
before a second command (in most cases
state.apply or any other Salt function) is sent
to the client to verify its presence. Having many
clients typically means some will respond faster
than others, so this timeout could be raised to
accommodate for the slower ones.

Tune when Client count increases significantly, or some clients
are responding correctly but too slowly, and Uyuni
excludes them from calls. This line appears in
/var/log/rhn/rhn_web_ui.log: "Got no
result for <COMMAND> on minion
<MINION_ID> (minion did not respond
in time)"

Value default 4 seconds

Value recommendation 4-20 seconds

Location /etc/rhn/rhn.conf

Example java.salt_presence_ping_timeout = 10

After changing Large java.salt_presence_ping_timeout
value can reduce overall throughput. This can be
compensated by increasing
java.salt_event_thread_pool_size

More information Specialized-guides › Salt

2.5. Tuning Large Scale Deployments

103 / 130 2.5. Tuning Large Scale Deployments | Uyuni 2024.08

2.5.3.12. java.salt_presence_ping_gather_job_timeout

Description Before any action is executed on a client, a
presence ping is executed to make sure the client is
reachable. After
java.salt_presence_ping_timeout
seconds have elapsed without a response, a second
command (in most cases state.apply or any
other Salt function) is sent to the client and if there
is no response from the client for the amount of
seconds specified with this parameter one more call
(saltutil.find_job) is sent for a final check.
This parameter sets the number of seconds after the
second command after which the client is definitely
considered timeout. Having many clients typically
means some will respond faster than others, so this
timeout could be raised to accommodate for the
slower ones.

Tune when Client count increases significantly, or some clients
are responding correctly but too slowly, and Uyuni
excludes them from calls. This line appears in
/var/log/rhn/rhn_web_ui.log: "Got no
result for <COMMAND> on minion
<MINION_ID> (minion did not respond
in time)"

Value default 1 second

Value recommendation 1-50 seconds

Location /etc/rhn/rhn.conf

Example java.salt_presence_ping_gather_job_t
imeout = 20

More information Specialized-guides › Salt

2.5.3.13. java.taskomatic_channel_repodata_workers

2.5. Tuning Large Scale Deployments

104 / 130 2.5. Tuning Large Scale Deployments | Uyuni 2024.08

Description Whenever content is changed in a software channel,
its metadata needs to be recomputed before clients
can use it. Channel-altering operations include the
addition of a patch, the removal of a package or a
repository synchronization run. This parameter
specifies the maximum number of Taskomatic
threads that Uyuni will use to recompute the
channel metadata. Channel metadata computation
is both CPU-bound and memory-heavy, so raising
this parameter and operating on many channels
simultaneously could cause Taskomatic to consume
significant resources, but channels will be available
to clients sooner.

Tune when Channel count increases significantly (more than
50), or more concurrent operations on channels are
expected.

Value default 2

Value recommendation 2-10

Location /etc/rhn/rhn.conf

Example java.taskomatic_channel_repodata_wor
kers = 4

After changing Check taskomatic.java.maxmemory for
adjustment, as every new thread will consume
memory

More information man rhn.conf

2.5.3.14. taskomatic.java.maxmemory

Description The maximum amount of memory Taskomatic can
use. Generation of metadata, especially for some
OSs, can be memory-intensive, so this parameter
might need raising depending on the managed OS
mix.

Tune when java.taskomatic_channel_repodata_wor
kers increases, OSs are added to Uyuni
(particularly Red Hat Enterprise Linux or Ubuntu),
or OutOfMemoryException errors appear in
/var/log/rhn/rhn_taskomatic_daemon.l
og.

2.5. Tuning Large Scale Deployments

105 / 130 2.5. Tuning Large Scale Deployments | Uyuni 2024.08

Value default 4096 MiB

Value recommendation 4096-16384 MiB

Location /etc/rhn/rhn.conf

Example taskomatic.java.maxmemory = 8192

After changing Check memory usage.

More information man rhn.conf

2.5.3.15. org.quartz.threadPool.threadCount

Description The number of Taskomatic worker threads.
Increasing this value allows Taskomatic to serve
more clients in parallel.

Tune when Client count increases significantly

Value default 20

Value recommendation 20-200

Location /etc/rhn/rhn.conf

Example org.quartz.threadPool.threadCount =
100

After changing Check hibernate.c3p0.max_size and
thread_pool for adjustment

More information http://www.quartz-scheduler.org/documentation/
2.4.0-SNAPSHOT/configuration.html

2.5.3.16. org.quartz.scheduler.idleWaitTime

Description Cycle time for Taskomatic. Decreasing this value
lowers the latency of Taskomatic.

Tune when Client count is in the thousands.

Value default 5000 ms

Value recommendation 1000-5000 ms

Location /etc/rhn/rhn.conf

Example org.quartz.scheduler.idleWaitTime =
1000

2.5. Tuning Large Scale Deployments

106 / 130 2.5. Tuning Large Scale Deployments | Uyuni 2024.08

http://www.quartz-scheduler.org/documentation/2.4.0-SNAPSHOT/configuration.html
http://www.quartz-scheduler.org/documentation/2.4.0-SNAPSHOT/configuration.html

More information http://www.quartz-scheduler.org/documentation/
2.4.0-SNAPSHOT/configuration.html

2.5.3.17. MinionActionExecutor.parallel_threads

Description Number of Taskomatic threads dedicated to
sending commands to Salt clients as a result of
actions being executed.

Tune when Client count is in the thousands.

Value default 1

Value recommendation 1-10

Location /etc/rhn/rhn.conf

Example taskomatic.com.redhat.rhn.taskomatic
.task.MinionActionExecutor.parallel_
threads = 10

2.5.3.18. SSHMinionActionExecutor.parallel_threads

Description Number of Taskomatic threads dedicated to
sending commands to Salt SSH clients as a result of
actions being executed.

Tune when Client count is in the hundreds.

Value default 20

Value recommendation 20-100

Location /etc/rhn/rhn.conf

Example taskomatic.com.redhat.rhn.taskomatic
.task.SSHMinionActionExecutor.parall
el_threads = 40

2.5.3.19. hibernate.c3p0.max_size

Description Maximum number of PostgreSQL connections
simultaneously available to both Tomcat and
Taskomatic. If any of those components requires
more concurrent connections, their requests will be
queued.

2.5. Tuning Large Scale Deployments

107 / 130 2.5. Tuning Large Scale Deployments | Uyuni 2024.08

http://www.quartz-scheduler.org/documentation/2.4.0-SNAPSHOT/configuration.html
http://www.quartz-scheduler.org/documentation/2.4.0-SNAPSHOT/configuration.html

Tune when java.message_queue_thread_pool_size
or maxThreads increase significantly, or when
org.quartz.threadPool.threadCount has
changed significantly. Each thread consumes one
connection in Taskomatic and Tomcat, having more
threads than connections might result in starving.

Value default 20

Value recommendation 100 to 200, higher than the maximum of
java.message_queue_thread_pool_size +
maxThreads and
org.quartz.threadPool.threadCount

Location /etc/rhn/rhn.conf

Example hibernate.c3p0.max_size = 100

After changing Check max_connections for adjustment.

More information https://www.mchange.com/projects/c3p0/#
maxPoolSize

2.5.3.20. rhn-search.java.maxmemory

Description The maximum amount of memory that the rhn-
search service can use.

Tune when Client count increases significantly, and
OutOfMemoryException errors appear in
journalctl -u rhn-search.

Value default 512 MiB

Value recommendation 512-4096 MiB

Location /etc/rhn/rhn.conf

Example rhn-search.java.maxmemory = 4096

After changing Check memory usage.

2.5.3.21. shared_buffers

Description The amount of memory reserved for PostgreSQL
shared buffers, which contain caches of database
tables and index data.

2.5. Tuning Large Scale Deployments

108 / 130 2.5. Tuning Large Scale Deployments | Uyuni 2024.08

https://www.mchange.com/projects/c3p0/#maxPoolSize
https://www.mchange.com/projects/c3p0/#maxPoolSize

Tune when RAM changes

Value default 25% of total RAM

Value recommendation 25-40% of total RAM

Location /var/lib/pgsql/data/postgresql.conf

Example shared_buffers = 8192MB

After changing Check memory usage.

More information https://www.postgresql.org/docs/15/runtime-
config-resource.html#GUC-SHARED-BUFFERS

2.5.3.22. max_connections

Description Maximum number of PostgreSQL connections
available to applications. More connections allow
for more concurrent threads/workers in various
components (in particular Tomcat and Taskomatic),
which generally improves performance. However,
each connection consumes resources, in particular
work_mem megabytes per sort operation per
connection.

Tune when hibernate.c3p0.max_size changes
significantly, as that parameter determines the
maximum number of connections available to
Tomcat and Taskomatic

Value default 400

Value recommendation Depends on other settings, use
/usr/lib/susemanager/bin/susemanager
-connection-check to obtain a
recommendation.

Location /var/lib/pgsql/data/postgresql.conf

Example max_connections = 250

After changing Check memory usage. Monitor memory usage
closely before and after the change.

More information https://www.postgresql.org/docs/15/runtime-
config-connection.html#GUC-MAX-
CONNECTIONS

2.5. Tuning Large Scale Deployments

109 / 130 2.5. Tuning Large Scale Deployments | Uyuni 2024.08

https://www.postgresql.org/docs/15/runtime-config-resource.html#GUC-SHARED-BUFFERS
https://www.postgresql.org/docs/15/runtime-config-resource.html#GUC-SHARED-BUFFERS
https://www.postgresql.org/docs/15/runtime-config-connection.html#GUC-MAX-CONNECTIONS
https://www.postgresql.org/docs/15/runtime-config-connection.html#GUC-MAX-CONNECTIONS
https://www.postgresql.org/docs/15/runtime-config-connection.html#GUC-MAX-CONNECTIONS

2.5.3.23. work_mem

Description The amount of memory allocated by PostgreSQL
every time a connection needs to do a sort or hash
operation. Every connection (as specified by
max_connections) might make use of an
amount of memory equal to a multiple of
work_mem.

Tune when Database operations are slow because of excessive
temporary file disk I/O. To test if that is happening,
add log_temp_files = 5120 to
/var/lib/pgsql/data/postgresql.conf,
restart PostgreSQL, and monitor the PostgreSQL
log files. If you see lines containing LOG:
temporary file: try raising this parameter’s
value to help reduce disk I/O and speed up database
operations.

Value recommendation 2-20 MB

Location /var/lib/pgsql/data/postgresql.conf

Example work_mem = 10MB

After changing check if the Uyuni Server might need additional
RAM.

More information https://www.postgresql.org/docs/15/runtime-
config-resource.html#GUC-WORK-MEM

2.5.3.24. effective_cache_size

Description Estimation of the total memory available to
PostgreSQL for caching. It is the explicitly reserved
memory (shared_buffers) plus any memory
used by the kernel as cache/buffer.

Tune when Hardware RAM or memory usage increase
significantly

Value recommendation Start with 75% of total RAM. For finer settings,
use shared_buffers + free memory +
buffer/cache memory. Free and buffer/cache can be
determined via the free -m command (free and
buff/cache in the output respectively)

Location /var/lib/pgsql/data/postgresql.conf

2.5. Tuning Large Scale Deployments

110 / 130 2.5. Tuning Large Scale Deployments | Uyuni 2024.08

https://www.postgresql.org/docs/15/runtime-config-resource.html#GUC-WORK-MEM
https://www.postgresql.org/docs/15/runtime-config-resource.html#GUC-WORK-MEM

Example effective_cache_size = 24GB

After changing Check memory usage

Notes This is an estimation for the query planner, not an
allocation.

More information https://www.postgresql.org/docs/15/runtime-
config-query.html#GUC-EFFECTIVE-CACHE-
SIZE

2.5.3.25. thread_pool

Description The number of worker threads serving Salt API
HTTP requests. A higher number can improve
parallelism of Uyuni Server-initiated Salt
operations, but will consume more memory.

Tune when java.message_queue_thread_pool_size
or org.quartz.threadPool.threadCount
are changed. Starvation can occur when there are
more Tomcat or Taskomatic threads making
simultaneous Salt API calls than there are Salt API
worker threads.

Value default 100

Value recommendation 100-500, but should be higher than the sum of
java.message_queue_thread_pool_size
and org.quartz.threadPool.threadCount

Location /etc/salt/master.d/susemanager.conf,
in the rest_cherrypy section.

Example thread_pool: 100

After changing Check worker_threads for adjustment.

More information https://docs.saltstack.com/en/latest/ref/netapi/all/
salt.netapi.rest_cherrypy.html#performance-tuning

2.5.3.26. worker_threads

2.5. Tuning Large Scale Deployments

111 / 130 2.5. Tuning Large Scale Deployments | Uyuni 2024.08

https://www.postgresql.org/docs/15/runtime-config-query.html#GUC-EFFECTIVE-CACHE-SIZE
https://www.postgresql.org/docs/15/runtime-config-query.html#GUC-EFFECTIVE-CACHE-SIZE
https://www.postgresql.org/docs/15/runtime-config-query.html#GUC-EFFECTIVE-CACHE-SIZE
https://docs.saltstack.com/en/latest/ref/netapi/all/salt.netapi.rest_cherrypy.html#performance-tuning
https://docs.saltstack.com/en/latest/ref/netapi/all/salt.netapi.rest_cherrypy.html#performance-tuning

Description The number of salt-master worker threads that
process commands and replies from minions and
the Salt API. Increasing this value, assuming
sufficient resources are available, allows Salt to
process more data in parallel from minions without
timing out, but will consume significantly more
RAM (typically about 70 MiB per thread). Setting
this value to very high values could cause opposite
effect as the workers will compete to each other for
the CPU resources and the performance could be
dropped significantly.

Tune when Client count increases significantly, thread_pool
increases significantly, or
SaltReqTimeoutError or Message timed
out errors appear in /var/log/salt/master
could be a sign of too low or too high value of this
parameter.

Value default 8

Value recommendation 8-32, depending on the number of the CPU cores
available for the server, it is recommended to keep
the value slightly less than the number of CPU
cores.

Location /etc/salt/master.d/tuning.conf

Example worker_threads: 16

After changing Check memory usage. Monitor memory usage
closely before and after the change. It makes sense
to monitor the salt-master stats event by
enabling master_stats and adjusting
master_stats_event_iter to fine tune the
value of this parameter.

More information https://docs.saltstack.com/en/latest/ref/
configuration/master.html#worker-threads

2.5.3.27. auth_events

2.5. Tuning Large Scale Deployments

112 / 130 2.5. Tuning Large Scale Deployments | Uyuni 2024.08

https://docs.saltstack.com/en/latest/ref/configuration/master.html#worker-threads
https://docs.saltstack.com/en/latest/ref/configuration/master.html#worker-threads

Description Determines whether the master will fire
authentication events. Authentication events are
fired when a minion performs an authentication
check with the master. It helps to reduce the
number of events published with the Salt Master
Event Publisher and reduce the workload on Event
Publisher subscribers.

Tune when Large amount of salt/auth events published in
the Salt event bus, which in most cases are useless
for the subscribers.

Value default True

Value recommendation False

Location /etc/salt/master.d/tuning.conf

Example auth_events: False

More information https://docs.saltproject.io/en/latest/ref/
configuration/master.html#auth-events

2.5.3.28. minion_data_cache_events

Description Determines whether the master will fire minion
data cache events (minion/refresh/*). Minion
data cache events are fired when a minion requests
a minion data cache refresh. It helps to reduce the
number of events published with the Salt Master
Event Publisher and reduce the workload on Event
Publisher subscribers.

Tune when Large amount of minion/refresh/* events
published in the Salt event bus, which in most cases
are useless for the subscribers.

Value default True

Value recommendation False

Location /etc/salt/master.d/tuning.conf

Example minion_data_cache_events: False

More information https://docs.saltproject.io/en/latest/ref/
configuration/master.html#minion-data-cache-
events

2.5. Tuning Large Scale Deployments

113 / 130 2.5. Tuning Large Scale Deployments | Uyuni 2024.08

https://docs.saltproject.io/en/latest/ref/configuration/master.html#auth-events
https://docs.saltproject.io/en/latest/ref/configuration/master.html#auth-events
https://docs.saltproject.io/en/latest/ref/configuration/master.html#minion-data-cache-events
https://docs.saltproject.io/en/latest/ref/configuration/master.html#minion-data-cache-events
https://docs.saltproject.io/en/latest/ref/configuration/master.html#minion-data-cache-events

2.5.3.29. pub_hwm

Description The maximum number of outstanding messages
sent by salt-master. If more than this number
of messages need to be sent concurrently,
communication with clients slows down, potentially
resulting in timeout errors during load peaks.

Tune when Client count increases significantly and Salt
request timed out. The master is not
responding. errors appear when pinging
minions during a load peak.

Value default 1000

Value recommendation 10000-100000

Location /etc/salt/master.d/tuning.conf

Example pub_hwm: 10000

More information https://docs.saltstack.com/en/latest/ref/
configuration/master.html#pub-hwm,
https://zeromq.org/socket-api/#high-water-mark

2.5.3.30. zmq_backlog

Description The maximum number of allowed client
connections that have started but not concluded the
opening process. If more than this number of
clients connects in a very short time frame,
connections are dropped and clients experience a
delay re-connecting.

Tune when Client count increases significantly and very many
clients reconnect in a short time frame, TCP
connections to the salt-master process get
dropped by the kernel.

Value default 1000

Value recommendation 1000-5000

Location /etc/salt/master.d/tuning.conf

Example zmq_backlog: 2000

2.5. Tuning Large Scale Deployments

114 / 130 2.5. Tuning Large Scale Deployments | Uyuni 2024.08

https://docs.saltstack.com/en/latest/ref/configuration/master.html#pub-hwm
https://docs.saltstack.com/en/latest/ref/configuration/master.html#pub-hwm
https://zeromq.org/socket-api/#high-water-mark

More information https://docs.saltstack.com/en/latest/ref/
configuration/master.html#zmq-backlog,
http://api.zeromq.org/3-0:zmq-getsockopt
(ZMQ_BACKLOG)

2.5.3.31. swappiness

Description How aggressively the kernel moves unused data
from memory to the swap partition. Setting a lower
parameter typically reduces swap usage and results
in better performance, especially when RAM
memory is abundant.

Tune when RAM increases, or swap is used when RAM
memory is sufficient.

Value default 60

Value recommendation 1-60. For 128 GB of RAM, 10 is expected to give
good results.

Location /etc/sysctl.conf

Example vm.swappiness = 20

More information https://documentation.suse.com/sles/15-SP4/html/
SLES-all/cha-tuning-memory.html#cha-tuning-
memory-vm

2.5.3.32. wait_for_backend

Description Determines whether the salt-broker service
should wait for backend sockets to be connected
before opening the sockets for listening for
connections from salt-minions. When enabled,
it helps to prevent collecting ZeroMQ messages
with the internal buffers of the sockets and pushing
them to the salt-master once connection is
restored.

Tune when Unstable connectivity between the Uyuni Proxy and
the Uyuni Server.

Value default False

Value recommendation True

Location /etc/salt/broker

2.5. Tuning Large Scale Deployments

115 / 130 2.5. Tuning Large Scale Deployments | Uyuni 2024.08

https://docs.saltstack.com/en/latest/ref/configuration/master.html#zmq-backlog
https://docs.saltstack.com/en/latest/ref/configuration/master.html#zmq-backlog
http://api.zeromq.org/3-0:zmq-getsockopt
https://documentation.suse.com/sles/15-SP4/html/SLES-all/cha-tuning-memory.html#cha-tuning-memory-vm
https://documentation.suse.com/sles/15-SP4/html/SLES-all/cha-tuning-memory.html#cha-tuning-memory-vm
https://documentation.suse.com/sles/15-SP4/html/SLES-all/cha-tuning-memory.html#cha-tuning-memory-vm

Example wait_for_backend: True

More information Proxies Connectivity

2.5.3.33. tcp_keepalive

Description The tcp keepalive interval to set on TCP ports. This
setting can be used to tune Salt connectivity issues
in messy network environments with misbehaving
firewalls.

Tune when Unstable connectivity between managed clients and
the Uyuni Proxy or the Uyuni Server.

Value default True

Value recommendation True

Location /etc/venv-salt-
minon/minion.d/tuning.conf or
/etc/salt/minion.d/tuning.conf,
depending on the minion type.

Example tcp_keepalive: True

After changing Check Minions Connectivity for more details to
fine tune extra keepalive parameters.

More information https://docs.saltproject.io/en/latest/ref/
configuration/minion.html#tcp-keepalive, Minions
Connectivity

2.5.4. Memory Usage

Adjusting some of the parameters listed in this section can result in a higher amount of RAM being used
by various components. It is important that the amount of hardware RAM is adequate after any
significant change.

To determine how RAM is being used, you will need to check each process that consumes it.

Operating system

Stop all Uyuni services and inspect the output of free -h.

Java-based components

This includes Taskomatic, Tomcat, and rhn-search. These services support a configurable memory
cap.

2.5. Tuning Large Scale Deployments

116 / 130 2.5. Tuning Large Scale Deployments | Uyuni 2024.08

specialized-guides:salt/salt-connectivity.pdf#proxies-connectivity
specialized-guides:salt/salt-connectivity.pdf#minions-connectivity
https://docs.saltproject.io/en/latest/ref/configuration/minion.html#tcp-keepalive
https://docs.saltproject.io/en/latest/ref/configuration/minion.html#tcp-keepalive
specialized-guides:salt/salt-connectivity.pdf#minions-connectivity
specialized-guides:salt/salt-connectivity.pdf#minions-connectivity

The Uyuni Server

Depends on many factors and can only be estimated. Measure PostgreSQL reserved memory by
checking shared_buffers, permanently. You can also multiply work_mem and
max_connections, and multiply by three for a worst case estimate of per-query RAM. You will
also need to check the operating system buffers and caches, which are used by PostgreSQL to host
copies of database data. These often automatically occupy any available RAM.

It is important that the Uyuni Server has sufficient RAM to accommodate all of these processes,
especially OS buffers and caches, to have reasonable PostgreSQL performance. We recommend you keep
several gigabytes available at all times, and add more as the database size on disk increases.

Whenever the expected amount of memory available for OS buffers and caches changes, update the
effective_cache_size parameter to have PostgreSQL use it correctly. You can calculate the total
available by finding the total RAM available, less the expected memory usage.

To get a live breakdown of the memory used by services on the Uyuni Server, use this command:

pidstat -p ALL -r --human 1 60 | tee pidstat-memory.log

This command will save a copy of displayed data in the pidstat-memory.log file for later analysis.

2.6. Monitoring Large Scale Deployments
You can monitor your Uyuni environment using Prometheus and Grafana. Uyuni Server and Proxy are
able to provide self-health metrics. You can also install and manage a number of Prometheus exporters on
clients.

Prometheus and Grafana packages are included in the Uyuni Client Tools for SUSE Linux Enterprise 12,
SUSE Linux Enterprise 15, CentOS 7, CentOS 8 and openSUSE 15.x.

You need to install Prometheus and Grafana on a machine separate from the Uyuni Server. We
recommend you use a managed client as your monitoring server.

For more information on monitoring, see Administration › Monitoring.

2.6. Monitoring Large Scale Deployments

117 / 130 2.6. Monitoring Large Scale Deployments | Uyuni 2024.08

Chapter 3. Quick Start: SAP Overview
Updated: 2024-08-23

This guide shows you how to use Uyuni to install and configure an SAP cluster. It guides you through
setting up a single Uyuni Server, preparing your client systems, and configuring the cluster using formulas.

• For more information about SAP, see the SAP documentation at https://documentation.suse.com/
sles-sap.

• For more information about Uyuni, see the Uyuni documentation at https://documentation.suse.com/
suma.

3.1. Prepare Server
Before you start you need to deploy the Uyuni Server. The method for deploying the Uyuni Server varies
depending on your hardware and environment.

Uyuni is deployed using the mgradm command. During the deployment process, when you are prompted
for which product to install, select Uyuni Server. For more information about deploying the Uyuni Server,
see Installation-and-upgrade › Container-deployment.

You need to do some configuration to set up the Uyuni Web UI. In your browser, navigate to the URL of
the server, and configure your administration access to the Web UI.

Now you can use the Web UI to prepare software channels and activation keys for your clients.

On the Uyuni Server, add the appropriate SAP channels: From the Web UI, add SUSE Linux
Enterprise Server 15 for SAP.

Synchronize the Uyuni Server with the SUSE Customer Center. You can do this using the Web UI. Add
the new channel to your activation key.

To check if a channel has finished synchronizing navigate to Admin › Setup Wizard and select the
Products tab. This dialog displays a completion bar for each product when they are being synchronized.

Software channels can be very large. The initial channel synchronization can
sometimes take up to several hours.

When the initial synchronization is complete, we recommended you clone the
channel before you work with it. This gives you a backup of the original
synchronization data.

3.2. Preparing Clients
Your SAP cluster requires several client systems. Prepare your clients on physical or virtual hardware, and
ensure you have SUSE Linux Enterprise Server 15 for SAP installation media ready. You cannot create an

3.1. Prepare Server

118 / 130 3.1. Prepare Server | Uyuni 2024.08

https://documentation.suse.com/sles-sap
https://documentation.suse.com/sles-sap
https://documentation.suse.com/suma
https://documentation.suse.com/suma

SAP cluster without the SUSE Linux Enterprise Server SAP extension, as it provides tooling specific to
SAP.

One of the key features of SAP is high availability of the cluster. Every component within an SAP cluster
has redundancy and failover protection. When you are preparing your clients, ensure you have enough
hardware and infrastructure to allow for this. For more information about hardware requirements, see
https://documentation.suse.com/sles-sap/15-SP4/html/SLES-SAP-installation/cha-plan.html#sec-hardware

For more information about the clients you need to set up for an SAP cluster, see
https://documentation.suse.com/sbp/all.

3.2.1. Register Clients to the SUSE Customer Center

Each client within your SAP cluster must be registered with the SUSE Customer Center. To obtain your
registration code, navigate to https://scc.suse.com/login in your web browser. Log in to your SCC account,
or follow the prompts to create a new account. Click the Subscriptions tab to see the registration code.
When you install SUSE Linux Enterprise Server 15 for SAP the Unified Installer prompts you for the
code.

For more information about registering Uyuni with SUSE Customer Center, see Installation-and-
upgrade › General-requirements.

3.2.2. Configure the Clients for Clustering

Every client system must have all the other client systems listed in their /etc/hosts file. Open the
/etc/hosts file on each client, and add the hostname for each of the other clients.

3.2.3. Create a Shared Storage Device

Each of the clients needs to be able to access a shared disk. The shared disk can be physical hardware
connected by ethernet, or you can set up a virtual disk and access it with iSCSI.

If you use a virtual disk, consider hosting it on a separate system. Do not use a client machine to host the
shared storage disk.

3.2.4. Download the SAP Installation Software

Download the SAP installation media and save a copy on each client. The software that you require
differs depending on your environment. For example, if you are using HANA, you need the SAP HANA
platform. If you are using Netweaver, you need different packages. These software packages are provided
by SAP, not by SUSE.

Ensure you have saved the installation software in the same file system location on each client.
Alternatively, save it to a shared NFS drive.

3.2.5. Configure Clients to Use Latest module.run

3.2. Preparing Clients

119 / 130 3.2. Preparing Clients | Uyuni 2024.08

https://documentation.suse.com/sles-sap/15-SP4/html/SLES-SAP-installation/cha-plan.html#sec-hardware
https://documentation.suse.com/sbp/all
https://scc.suse.com/login

Each client needs to be configured to use the latest version of module.run. On each of the client
machines, open the /etc/salt/minion configuration file and add or edit this line:

use_superseded:
 - module.run

Restart the salt-minion process to enable the changes:

systemctl restart salt-minion

3.2.6. Install Additional Disks for HANA

For the clients that are going to run the HANA database, you require an additional storage device. This
device is used to store files required by HANA, which are located in the /hana/ directory.

We recommend that this storage device be at least 20 GB. For some installations, you might require more,
and it is possible to use multiple disks to provide this storage. For comprehensive hardware requirements,
see https://documentation.suse.com/sbp/all.

3.2.7. Register Clients to the Server

First of all, make sure you have an activation key that is associated with the SLE-Product-
SLES_SAP15 base channel. For more information about activation keys, see Client-configuration ›
Activation-keys.

In the Uyuni Web UI, navigate to Systems › Bootstrapping. Fill in the appropriate details, and make sure
you check the Manage System Completely via SSH checkbox. In the Activation Key field,
select the SLES for SAP activation key.

For more information about registering, see Client-configuration › Registration-webui.

3.3. Configure Clients
Uyuni uses formulas with forms to configure your SAP clients. There are two formulas that you need to
use:

• Hana to configure the HANA database

• Cluster to configure the clients into a cluster

The formulas are provided by packages that you can download with your package manager. You need to
install the formulas on the Uyuni Server. When you have installed the package, you can use the Uyuni
Web UI to enable and configure the formulas. As you go through the formula configuration process,
provide details of the clients that contain your SAP cluster, to set them up appropriately.

3.3. Configure Clients

120 / 130 3.3. Configure Clients | Uyuni 2024.08

https://documentation.suse.com/sbp/all

To install the formulas on the Uyuni Server, use your package manager to install these packages:

• saphanabootstrap-formula

• sapnwbootstrap-formula

• drbd-formula

• habootstrap-formula

• salt-shaptools

The order that you enable and configure the formulas is important. You must
enable, configure, and apply the HANA formula first. Then you can enable,
configure, and apply the cluster formula. If you perform these steps in the wrong
order, your SAP installation fails.

3.3.1. Enable and Configure the HANA Formula

In the Uyuni Web UI, navigate to Systems › System List and click the client to use as the primary client
in the cluster.

Navigate to the Formulas tab, locate the Sap Hana Deployment heading, and check the
Saphanabootstrap formula in the list. Click Save and apply the highstate to activate the formula.

When the formula is activated, navigate to the Formulas › Hana tab, and complete the details in the
form.

Make sure you check Install required packages to install everything you need on the client. In
the Nodes sections, type the short hostname of the client to install the HANA database or the hostname
you can retrieve on the command line with:

salt '<client-name>' grains.item host

Provide further details for the installation.

Complete the remaining details according to your environment, click Save , and apply the highstate. When
the highstate is complete, you can go on to apply the cluster formula.

3.3. Configure Clients

121 / 130 3.3. Configure Clients | Uyuni 2024.08

3.3.2. Enable and Configure the Cluster Formula

In the Uyuni Web UI, navigate to Systems › System List and click the client to use as the primary client
in the cluster.

Navigate to the Formulas tab, locate the Cluster heading, and check the Habootstrap formula in
the list. Click Save and apply the highstate to activate the formula.

3.3. Configure Clients

122 / 130 3.3. Configure Clients | Uyuni 2024.08

When the formula is activated, navigate to the Formulas › Cluster tab, and complete the details in the
form.

Make sure you check Install required packages to install everything you need on the client.
Give your cluster a name, and specify the hostname of the primary client in the cluster.

Complete the remaining details according to your environment, click Save , and apply the highstate.

3.3. Configure Clients

123 / 130 3.3. Configure Clients | Uyuni 2024.08

3.3. Configure Clients

124 / 130 3.3. Configure Clients | Uyuni 2024.08

Chapter 4. GNU Free Documentation License
Copyright © 2000, 2001, 2002 Free Software Foundation, Inc. 51 Franklin St, Fifth Floor, Boston, MA
02110-1301 USA. Everyone is permitted to copy and distribute verbatim copies of this license document,
but changing it is not allowed.

0. PREAMBLE
The purpose of this License is to make a manual, textbook, or other functional and useful document
"free" in the sense of freedom: to assure everyone the effective freedom to copy and redistribute it, with
or without modifying it, either commercially or noncommercially. Secondarily, this License preserves for
the author and publisher a way to get credit for their work, while not being considered responsible for
modifications made by others.

This License is a kind of "copyleft", which means that derivative works of the document must themselves
be free in the same sense. It complements the GNU General Public License, which is a copyleft license
designed for free software.

We have designed this License in order to use it for manuals for free software, because free software
needs free documentation: a free program should come with manuals providing the same freedoms that
the software does. But this License is not limited to software manuals; it can be used for any textual work,
regardless of subject matter or whether it is published as a printed book. We recommend this License
principally for works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS
This License applies to any manual or other work, in any medium, that contains a notice placed by the
copyright holder saying it can be distributed under the terms of this License. Such a notice grants a world-
wide, royalty-free license, unlimited in duration, to use that work under the conditions stated herein. The
"Document", below, refers to any such manual or work. Any member of the public is a licensee, and is
addressed as "you". You accept the license if you copy, modify or distribute the work in a way requiring
permission under copyright law.

A "Modified Version" of the Document means any work containing the Document or a portion of it,
either copied verbatim, or with modifications and/or translated into another language.

A "Secondary Section" is a named appendix or a front-matter section of the Document that deals
exclusively with the relationship of the publishers or authors of the Document to the Document’s overall
subject (or to related matters) and contains nothing that could fall directly within that overall subject.
(Thus, if the Document is in part a textbook of mathematics, a Secondary Section may not explain any
mathematics.) The relationship could be a matter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position regarding them.

The "Invariant Sections" are certain Secondary Sections whose titles are designated, as being those of
Invariant Sections, in the notice that says that the Document is released under this License. If a section
does not fit the above definition of Secondary then it is not allowed to be designated as Invariant. The
Document may contain zero Invariant Sections. If the Document does not identify any Invariant Sections

125 / 130 Chapter 4. GNU Free Documentation License | Uyuni 2024.08

then there are none.

The "Cover Texts" are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover
Texts, in the notice that says that the Document is released under this License. A Front-Cover Text may
be at most 5 words, and a Back-Cover Text may be at most 25 words.

A "Transparent" copy of the Document means a machine-readable copy, represented in a format whose
specification is available to the general public, that is suitable for revising the document straightforwardly
with generic text editors or (for images composed of pixels) generic paint programs or (for drawings)
some widely available drawing editor, and that is suitable for input to text formatters or for automatic
translation to a variety of formats suitable for input to text formatters. A copy made in an otherwise
Transparent file format whose markup, or absence of markup, has been arranged to thwart or discourage
subsequent modification by readers is not Transparent. An image format is not Transparent if used for any
substantial amount of text. A copy that is not "Transparent" is called "Opaque".

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input
format, LaTeX input format, SGML or XML using a publicly available DTD, and standard-conforming
simple HTML, PostScript or PDF designed for human modification. Examples of transparent image
formats include PNG, XCF and JPG. Opaque formats include proprietary formats that can be read and
edited only by proprietary word processors, SGML or XML for which the DTD and/or processing tools
are not generally available, and the machine-generated HTML, PostScript or PDF produced by some
word processors for output purposes only.

The "Title Page" means, for a printed book, the title page itself, plus such following pages as are needed
to hold, legibly, the material this License requires to appear in the title page. For works in formats which
do not have any title page as such, "Title Page" means the text near the most prominent appearance of the
work’s title, preceding the beginning of the body of the text.

A section "Entitled XYZ" means a named subunit of the Document whose title either is precisely XYZ or
contains XYZ in parentheses following text that translates XYZ in another language. (Here XYZ stands
for a specific section name mentioned below, such as "Acknowledgements", "Dedications",
"Endorsements", or "History".) To "Preserve the Title" of such a section when you modify the Document
means that it remains a section "Entitled XYZ" according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that this License applies
to the Document. These Warranty Disclaimers are considered to be included by reference in this License,
but only as regards disclaiming warranties: any other implication that these Warranty Disclaimers may
have is void and has no effect on the meaning of this License.

2. VERBATIM COPYING
You may copy and distribute the Document in any medium, either commercially or noncommercially,
provided that this License, the copyright notices, and the license notice saying this License applies to the
Document are reproduced in all copies, and that you add no other conditions whatsoever to those of this
License. You may not use technical measures to obstruct or control the reading or further copying of the
copies you make or distribute. However, you may accept compensation in exchange for copies. If you
distribute a large enough number of copies you must also follow the conditions in section 3.

126 / 130 Chapter 4. GNU Free Documentation License | Uyuni 2024.08

You may also lend copies, under the same conditions stated above, and you may publicly display copies.

3. COPYING IN QUANTITY
If you publish printed copies (or copies in media that commonly have printed covers) of the Document,
numbering more than 100, and the Document’s license notice requires Cover Texts, you must enclose the
copies in covers that carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front cover,
and Back-Cover Texts on the back cover. Both covers must also clearly and legibly identify you as the
publisher of these copies. The front cover must present the full title with all words of the title equally
prominent and visible. You may add other material on the covers in addition. Copying with changes
limited to the covers, as long as they preserve the title of the Document and satisfy these conditions, can
be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed
(as many as fit reasonably) on the actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must either
include a machine-readable Transparent copy along with each Opaque copy, or state in or with each
Opaque copy a computer-network location from which the general network-using public has access to
download using public-standard network protocols a complete Transparent copy of the Document, free of
added material. If you use the latter option, you must take reasonably prudent steps, when you begin
distribution of Opaque copies in quantity, to ensure that this Transparent copy will remain thus accessible
at the stated location until at least one year after the last time you distribute an Opaque copy (directly or
through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before redistributing
any large number of copies, to give them a chance to provide you with an updated version of the
Document.

4. MODIFICATIONS
You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and
3 above, provided that you release the Modified Version under precisely this License, with the Modified
Version filling the role of the Document, thus licensing distribution and modification of the Modified
Version to whoever possesses a copy of it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and from
those of previous versions (which should, if there were any, be listed in the History section of the
Document). You may use the same title as a previous version if the original publisher of that version
gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for authorship of the
modifications in the Modified Version, together with at least five of the principal authors of the
Document (all of its principal authors, if it has fewer than five), unless they release you from this
requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the publisher.

127 / 130 Chapter 4. GNU Free Documentation License | Uyuni 2024.08

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public permission to use
the Modified Version under the terms of this License, in the form shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given in
the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled "History", Preserve its Title, and add to it an item stating at least the
title, year, new authors, and publisher of the Modified Version as given on the Title Page. If there is
no section Entitled "History" in the Document, create one stating the title, year, authors, and
publisher of the Document as given on its Title Page, then add an item describing the Modified
Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to a Transparent copy
of the Document, and likewise the network locations given in the Document for previous versions it
was based on. These may be placed in the "History" section. You may omit a network location for a
work that was published at least four years before the Document itself, or if the original publisher of
the version it refers to gives permission.

K. For any section Entitled "Acknowledgements" or "Dedications", Preserve the Title of the section,
and preserve in the section all the substance and tone of each of the contributor acknowledgements
and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles. Section
numbers or the equivalent are not considered part of the section titles.

M. Delete any section Entitled "Endorsements". Such a section may not be included in the Modified
Version.

N. Do not retitle any existing section to be Entitled "Endorsements" or to conflict in title with any
Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary
Sections and contain no material copied from the Document, you may at your option designate some or
all of these sections as invariant. To do this, add their titles to the list of Invariant Sections in the
Modified Version’s license notice. These titles must be distinct from any other section titles.

You may add a section Entitled "Endorsements", provided it contains nothing but endorsements of your
Modified Version by various parties—for example, statements of peer review or that the text has been
approved by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as a
Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only one passage of
Front-Cover Text and one of Back-Cover Text may be added by (or through arrangements made by) any
one entity. If the Document already includes a cover text for the same cover, previously added by you or
by arrangement made by the same entity you are acting on behalf of, you may not add another; but you
may replace the old one, on explicit permission from the previous publisher that added the old one.

128 / 130 Chapter 4. GNU Free Documentation License | Uyuni 2024.08

The author(s) and publisher(s) of the Document do not by this License give permission to use their names
for publicity for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS
You may combine the Document with other documents released under this License, under the terms
defined in section 4 above for modified versions, provided that you include in the combination all of the
Invariant Sections of all of the original documents, unmodified, and list them all as Invariant Sections of
your combined work in its license notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical Invariant Sections
may be replaced with a single copy. If there are multiple Invariant Sections with the same name but
different contents, make the title of each such section unique by adding at the end of it, in parentheses, the
name of the original author or publisher of that section if known, or else a unique number. Make the same
adjustment to the section titles in the list of Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled "History" in the various original documents,
forming one section Entitled "History"; likewise combine any sections Entitled "Acknowledgements", and
any sections Entitled "Dedications". You must delete all sections Entitled "Endorsements".

6. COLLECTIONS OF DOCUMENTS
You may make a collection consisting of the Document and other documents released under this License,
and replace the individual copies of this License in the various documents with a single copy that is
included in the collection, provided that you follow the rules of this License for verbatim copying of each
of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under this
License, provided you insert a copy of this License into the extracted document, and follow this License
in all other respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS
A compilation of the Document or its derivatives with other separate and independent documents or
works, in or on a volume of a storage or distribution medium, is called an "aggregate" if the copyright
resulting from the compilation is not used to limit the legal rights of the compilation’s users beyond what
the individual works permit. When the Document is included in an aggregate, this License does not apply
to the other works in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the
Document is less than one half of the entire aggregate, the Document’s Cover Texts may be placed on
covers that bracket the Document within the aggregate, or the electronic equivalent of covers if the
Document is in electronic form. Otherwise they must appear on printed covers that bracket the whole
aggregate.

8. TRANSLATION

129 / 130 Chapter 4. GNU Free Documentation License | Uyuni 2024.08

Translation is considered a kind of modification, so you may distribute translations of the Document
under the terms of section 4. Replacing Invariant Sections with translations requires special permission
from their copyright holders, but you may include translations of some or all Invariant Sections in
addition to the original versions of these Invariant Sections. You may include a translation of this License,
and all the license notices in the Document, and any Warranty Disclaimers, provided that you also include
the original English version of this License and the original versions of those notices and disclaimers. In
case of a disagreement between the translation and the original version of this License or a notice or
disclaimer, the original version will prevail.

If a section in the Document is Entitled "Acknowledgements", "Dedications", or "History", the
requirement (section 4) to Preserve its Title (section 1) will typically require changing the actual title.

9. TERMINATION
You may not copy, modify, sublicense, or distribute the Document except as expressly provided for under
this License. Any other attempt to copy, modify, sublicense or distribute the Document is void, and will
automatically terminate your rights under this License. However, parties who have received copies, or
rights, from you under this License will not have their licenses terminated so long as such parties remain
in full compliance.

10. FUTURE REVISIONS OF THIS LICENSE
The Free Software Foundation may publish new, revised versions of the GNU Free Documentation
License from time to time. Such new versions will be similar in spirit to the present version, but may
differ in detail to address new problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document specifies that a
particular numbered version of this License "or any later version" applies to it, you have the option of
following the terms and conditions either of that specified version or of any later version that has been
published (not as a draft) by the Free Software Foundation. If the Document does not specify a version
number of this License, you may choose any version ever published (not as a draft) by the Free Software
Foundation.

ADDENDUM: How to use this License for your documents

Copyright (c) YEAR YOUR NAME.
 Permission is granted to copy, distribute and/or modify this document
 under the terms of the GNU Free Documentation License, Version 1.2
 or any later version published by the Free Software Foundation;
 with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
 A copy of the license is included in the section entitled "GNU
 Free Documentation License".

130 / 130 Chapter 4. GNU Free Documentation License | Uyuni 2024.08

http://www.gnu.org/copyleft/

	Uyuni 2024.08: Specialized Guides
	Table of Contents
	Specialized Guides Overview
	Chapter 1. Salt Guide Overview
	1.1. Terminology
	1.2. Salt Command
	1.2.1. Salt Targets
	1.2.2. Salt Execution Modules
	1.2.3. Salt Function Arguments

	1.3. Often Used Salt Commands
	1.4. Salt States and Pillars
	1.4.1. Group States
	1.4.2. Salt Pillars
	1.4.3. Download Endpoint

	1.5. GPG Encrypted Pillars
	1.5.1. Generate GPG keyring for Salt Master
	1.5.2. Use GPG for encrypting Pillar secrets
	1.5.3. Export the GPG key

	1.6. Custom Salt States
	1.6.1. Create a New Custom Salt Channel
	1.6.2. Example Custom State Files
	1.6.3. Custom State to Trust a GPG Key
	1.6.4. Apply a custom state at highstate

	1.7. Salt File Locations and Structure
	1.8. The gitfs Fileserver Backend
	1.9. Install Using Yomi
	1.9.1. Install the Yomi Formula
	1.9.2. Install the PXE Image
	1.9.3. Register Yomi in Cobbler
	1.9.4. Example Salt Pillar Preparation
	1.9.5. Monitor the Installation

	1.10. Configuration Modules
	1.10.1. Install Configuration Modules

	1.11. Salt Formulas
	1.11.1. Formulas Provided by Uyuni
	1.11.2. Bind Formula
	1.11.3. Branch Network Formula
	1.11.4. DHCPd Formula
	1.11.5. Image Synchronization Formula
	1.11.6. Liberate Formula
	1.11.7. Monitoring Formula
	1.11.8. PXE Formula
	1.11.9. Saltboot Formula
	1.11.10. TFTPd Formula
	1.11.11. Virtualization Guest Formula
	1.11.12. Virtualization Host Formula
	1.11.13. Yomi Formula
	1.11.14. Custom Salt Formulas

	1.12. Salt SSH
	1.12.1. SSH Connection Methods
	1.12.2. Salt SSH Integration
	1.12.3. Authentication
	1.12.4. User Account
	1.12.5. HTTP Redirection
	1.12.6. Call Sequence
	1.12.7. Bootstrap Sequence
	1.12.8. Proxy Support
	1.12.9. Users and SSH Key Management
	1.12.10. Repository Access with a Proxy
	1.12.11. Proxy Setup
	1.12.12. Rotate SSH keys

	1.13. Salt Rate Limiting
	1.13.1. Batching
	1.13.2. Disabling the Salt Mine

	1.14. Scaling Minions (Large Scale Deployments)
	1.15. Salt Connectivity
	1.15.1. Minions Connectivity
	1.15.2. Proxies Connectivity

	Chapter 2. Large Deployments Guide Overview
	2.1. Hardware Requirements
	2.2. Using a Single Server to Manage Large Scale Deployments
	2.2.1. Operation Recommendations

	2.3. Multiple Servers with Hub to Manage Large Scale Deployments
	2.3.1. Hub Requirements
	2.3.2. Hub XMLRPC API Deployment
	2.3.3. Using the Hub XMLRPC API
	2.3.4. Hub XMLRPC API Namespaces
	2.3.5. Hub XMLRPC API Authentication Modes
	2.3.6. Hub Reporting

	2.4. Managing Large Scale Deployments in a Retail Environment
	2.5. Tuning Large Scale Deployments
	2.5.1. The Tuning Process
	2.5.2. Environmental Variables
	2.5.3. Parameters
	2.5.4. Memory Usage

	2.6. Monitoring Large Scale Deployments

	Chapter 3. Quick Start: SAP Overview
	3.1. Prepare Server
	3.2. Preparing Clients
	3.2.1. Register Clients to the SUSE Customer Center
	3.2.2. Configure the Clients for Clustering
	3.2.3. Create a Shared Storage Device
	3.2.4. Download the SAP Installation Software
	3.2.5. Configure Clients to Use Latest module.run
	3.2.6. Install Additional Disks for HANA
	3.2.7. Register Clients to the Server

	3.3. Configure Clients
	3.3.1. Enable and Configure the HANA Formula
	3.3.2. Enable and Configure the Cluster Formula

	Chapter 4. GNU Free Documentation License

